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Abstract

Breast cancer is a major global health concern and ranks as one of the leading causes of cancer-related mortality in women.
This research focuses on utilizing the stochastic gradient boosting (SGB) technique to classify breast cancer data from open-
access sources and identify key risk factors. The dataset was employed to develop a classification model, with SGB used for
the disease classification process. The performance of the model was assessed using metrics such as accuracy, balanced
accuracy, sensitivity, specificity, and both positive and negative predictive values. The SGB model achieved perfect results with
100% in all key metrics, including accuracy, sensitivity, specificity, and the F1 score. Additionally, the study identified the most
significant risk factors, including “cave points_mean,” “area_worst,” “perimeter_worst,” and “concave points_worst,” which
were found to have the highest importance. The findings suggest that the SGB-based model can effectively differentiate between
breast cancer patients and healthy individuals while also pinpointing critical risk factors, thus contributing to more accurate
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diagnosis and risk prediction.
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Introduction

Breast cancer remains a major public health issue
worldwide and is among the most fatal cancers for
women [1]. Early diagnosis is critical, as it can
significantly influence treatment outcomes and patient
survival. Traditional methods for diagnosing breast
cancer typically begin with a physical examination,
followed by a review of the patient’s medical history.
Depending on the findings, further diagnostic tests such
as mammography, breast ultrasound, and ductoscopy
(which uses a fiber-optic device to examine milk ducts)
may be performed. Additional methods like ductography
(contrast imaging of the ducts) and magnetic resonance

Access this article online

Website: https://smerpub.com/ E-ISSN: 3108-4834

Received: 16 November 2021; Revised: 04 February 2022; Accepted: 05 February 2022

How to cite this article: Kayira O. Predicting Breast Cancer Risk Using
Stochastic Gradient Boosting. Arch Int J Cancer Allied Sci. 2022;2(1):17-23.
https://doi.org/10.51847/WIXAgukWkR

imaging (MRI) may also be employed when necessary
[2].

Data mining, also known as knowledge discovery from
large datasets, plays a key role in identifying patterns and
making predictions based on hidden data relationships
[3]. Machine learning algorithms, which focus on
classification, regression, and association rule mining,
enable systems to learn from historical data and make
predictions on new data during the validation and testing
phases [4].

This research aims to apply the stochastic gradient
boosting (SGB) method to differentiate between patients
with and without breast cancer. Additionally, the study
seeks to identify significant risk factors for breast cancer
and assess the importance of these factors concerning
cancer diagnosis.

Materials and Methods

Dataset

The dataset for this study was sourced from the UCI

Machine  Learning  Repository  (available  at
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https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsint+%28Diagnostic%29) and was used to predict
the presence or absence of breast cancer through the SGB
method [5]. The data includes features derived from fine
needle aspiration (FNA) biopsies of breast masses, with
each feature representing characteristics of the cell nuclei
in the image. Key attributes include an ID number, the
diagnosis (M = malignant, B = benign), and ten
quantitative features describing the shape and texture of
the cell nuclei. These features include the mean radius
(distance from the center to the perimeter), texture
(variability in gray-scale values), perimeter, area,
smoothness  (variation in radius), compactness
(perimeter*2 / area - 1.0), concavity (depth of
indentations on the contour), concave points (number of
indentations), symmetry,
(approximates the complexity of the shape). For each
image, the mean, standard error, and worst (maximum of
the three highest values) of these characteristics were
computed, leading to 30 features in total. For example,
“field 3” corresponds to the mean radius, “field 13”
represents the standard error of the radius, and “field 23”
denotes the worst radius. The data entries are recorded
with four decimal places, and there are no missing values.
The dataset consists of 63% benign cases (357) and 37%
malignant cases (212).

and fractal dimension

Stochastic gradient boosting

Boosting, an ensemble learning strategy serves as a meta-
classifier and is utilized for predictive modeling [6].
Stochastic gradient boosting (SGB), introduced by
Schapire [7], is an important tool for improving
prediction accuracy and is particularly beneficial in
classification tasks when combined with preprocessing
steps. Commonly used methods like XGB, SGB, and
Lasso are particularly popular in the realm of breast
cancer and mammography research and are also highly
effective in identifying significant predictive variables
within health-related datasets. These techniques are ideal

when working with complex interactions among
variables that may be nonlinear or have high
dimensionality [8]. SGB implementation was achieved
using R’s Generalized Boosted Regression Models
(GBM) package [9]. Key parameters for fine-tuning the
SGB classifier include values for n.trees, shrinkage, and
n.minobsinnode.

Data analysis

To test for multivariate normality, the Henze-Zirkler test
was employed. For summarizing quantitative data,
median values (along with minimum and maximum
ranges) were used, while categorical variables were
reported in terms of counts and percentages. The Mann-
Whitney U test was used to assess whether there were
significant  differences in the target wvariable.
Relationships between the variables were analyzed using
the Spearman correlation coefficient. Model fitting was
evaluated via the Likelihood Ratio Test, with a
significance level set at P < 0.05. IBM SPSS Statistics
26.0 was the software used for the analysis.

Modeling

SGB, as one of the machine learning algorithms, was
employed in this study’s modeling process. The analysis
was conducted using the 100 repeated bootstrap method.
Performance was evaluated through various metrics,
including balanced accuracy, accuracy, sensitivity,
specificity, positive/negative predictive values, and F1-
score. To optimize parameters, grid search was applied,
with surface selection used to determine the optimal
depth. The 5-fold cross-validation method was utilized
for resampling.

Results and Discussion

The dataset consisted of 357 (63%) benign and 212
(37%) malignant breast cancer patients. Figure 1
displays the distribution of the variables.
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Figure 1. Distributions of the variables

Descriptive statistics for the variables analyzed in this A notable difference was. observed between the.dlagnosm

research are shown in Table 1 groups for all wvariables, except radius mean,
fractal dimension_mean, and smoothness se, where no
significant variation was found (P <0.001).

Table 1. Descriptive statistics for variables

Breast Cancer

Variables Bening (357) Malignant (212) P-value
Median (Min-Maks) Median (Min-Maks)
Radius_mean 21.1(6.9-47.4) 19.4 (13.0-44.9) 0.108
Texture_mean 19.2 (13.1-47.0) 22.2 (14.2-44.9) <0.001
Perimeter mean 78.1 (43.7-114.6) 114.2 (71.9-188.5) <0.001
Area_mean 458.4 (143.5-992.1) 932.0 (361.6-2501) <0.001
Smoothness_mean 0.09 (0.05-0.16) 0.1 (0.07-0.14) <0.001
Compactness_mean 0.08 (0.02-0.22) 0.13 (0.05-0.35) <0.001
Concavity mean 0.04 (0.0-0.41) 0.15 (0.02-0.43) <0.001
Concave points mean 0.02 (0.0-0.09) 0.09 (0.02-0.2) <0.001
Symmetry mean 0.17 (0.11-0.27) 0.19 (0.13-0.3) <0.001
Fractal dimension_mean 0.06 (0.05-0.1) 0.06 (0.05-0.1) 0.612
Radius _se 0.26 (0.11-0.88) 0.54 (0.19-1.35) <0.001
Texture se 1.14 (0.36-1.76) 1.14 (0.36-1.67) <0.001
Perimeter _se 1.94 (0.76-4.56) 3.84 (1.33-4.67) <0.001
Area_se 23.24 (6.8-47.1) 60.01 (13.99-44.83) <0.001
Smoothness_se 0.01 (0.0-0.02) 0.01 (0.0-0.03) 0.749
Compactness_se 0.02 (0.0-0.11) 0.03 (0.01-0.14) <0.001
Concavity se 0.02 (0.0-0.4) 0.04 (0.01-0.14) <0.001
Concave points _se 0.01 (0.0-0.05) 0.01 (0.01-0.04) <0.001
Symmetry se 0.02 (0.01-0.06) 0.02 (0.01-0.08) 0.018

Fractal dimension se 0.0 (0.0-0.03) 0.0 (0.0-0.01) 0.007
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The correlation matrix is presented in Figure 2 of this
study, which includes a series of numerical values
ranging from -1 to 1. A value of 1 indicates a strong
positive correlation between variables, such as mean
radius and area. A correlation of 0 implies no relationship
between  variables, like  radius mean and
fractal dimension_se. A value of -1 suggests a perfect
negative correlation, although, in this study, the
correlation between radius_mean and
fractal dimension mean is -0.3, indicating a weak
negative relationship. This negative correlation still
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reflects an inverse relationship. The data shows a
minimal or no correlation between radius mean and
concavity mean, but it is statistically significant (r = -
0.0917, P =0.029). This might be due to the large sample
size, though the clinical relevance could be questioned.
Similarly, no significant correlation was found between
radius_mean and texture mean (r = -0.0113, P = 0.789),
but there is a weak positive and statistically significant
relationship between texture mean and texture worst (r
=0.2318, P <0.001). Similar interpretations can be made
for other variable relationships.
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Figure 2. Correlation matrix of variables

The results for the SGB model's performance metrics are
shown in Table 2. All performance metrics, including
accuracy, balanced accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, and

F1 score, reached 100%. The model’s fit was assessed
using the likelihood ratio tests (chi-square = 751.44, df =
1, P-value < 0.001).

Table 2. Performance metrics of the SGB model

Metric Value (%)
Accuracy 100
Balanced Accuracy 100
Sensitivity 100
Specificity 100
Positive predictive value 100
Negative predictive value 100

F1 score

100
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Variable importance obtained as a result of SGB
modeling is given in Table 3. Figure 3 shows the

importance levels of genes that are important for the SGB
model.

Table 3. Variable importance of SGB

Variable Importance Variable Importance
Cave.points_mean 100 Radius_se 0.22
Area_worst 68.18 Compactness mean 0.22
Perimeter worst 32.19 Smoothness mean 0.21
Concave.points_worst 24.78 Symmetry mean 0.18
Texture worst 8.18 Concave.points se 0.14
Texture mean 2.67 Perimeter se 0.14
Smoothness worst 2.23 Smoothness_se 0.11
Area se 1.66 Radius worst 0.09
Concavity worst 1.46 Fractal dimension worst 0.08
Compactness_worst 1.44 Concavity se 0.07
Symmetry worst 1.33 Fractal dimension se 0.06
Texture se 1,00 Perimeter mean 0.001
Symmetry se 0.72 Concavity mean 0.001
Fractal dimension_mean 0.50 Area_mean 0.00
Compactness_se 0.37 Radius mean 0.00

I|‘|

Figure 3. Variable importance of SGB

This study focused on developing a model for accurately
distinguishing between benign and malignant breast
cancer cells using stochastic gradient boosting (SGB) and
digitized data from fine needle aspiration (FNA) images
of breast mass samples.

Although machine learning techniques have shown

strong performance in classifying breast cancer

histopathological images, the effectiveness of these
models can be impacted by the size of the data and the
complexity of the model architecture. Ensemble learning
techniques, a specific branch of machine learning, offer
advantages over traditional methods due to their layered
approach, which tends to improve classification
performance for cancer detection. This enhanced
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performance is a significant reason why ensemble
learning is gaining popularity in medical fields.

In a recent study, various classification methods, such as
support vector machines, k-nearest neighbors, and
probabilistic neural networks, were employed to
differentiate between benign and malignant breast
tumors. These methods incorporated feature selection
techniques like signal-to-noise ratio sequencing, forward
selection, and principal component analysis. The support
vector machine classifier demonstrated impressive
diagnostic accuracy, achieving 98.80% and 96.33%
accuracy in distinguishing tumors from two widely used
breast cancer datasets [10].

A different study compared the performance of two
classifiers, Naive Bayes (NB) and k-nearest neighbors
(KNN), for breast cancer classification. When evaluated
using cross-validation, the KNN classifier yielded the
highest accuracy of 97.51%, followed by NB at 96.19%
[11].

In another paper, a comparison was made between
different machine learning algorithms— support vector
machine (SVM), decision trees (C4.5), Naive Bayes
(NB), and k-nearest neighbor (k-NN)—using the
Wisconsin breast cancer dataset. The results indicated
that SVM outperformed the others with an accuracy of
97.13% and the lowest error rate. All experiments were
performed using the WEKA data mining tool in a
simulated environment [12].

Similarly, Aamir et al. developed a model to classify
breast cancer risk using various supervised machine
learning algorithms, including SVM, random forest,
gradient boosting, artificial networks, and
multilayer perceptron models. Their results showed that
the multilayer perceptron model achieved the highest
accuracy at 99.12%, outperforming all other models
tested [13].

Another study focused on predicting breast cancer
survival by using machine learning models to identify
key prognostic indicators. Among the models evaluated,
random forests provided the highest accuracy at 82.7%,
surpassing other models like decision trees, which
showed lower performance [14]. Similarly, Mirsadeghi
et al. [15] employed ensemble learning algorithms to
identify driver genes in metastatic breast cancer. The use
of algorithms like SVM, ANN, Random Forest, and
EARN resulted in outstanding performance, with ROC-
AUC scores of 99.24% for metastatic breast cancer and
99.79% for breast cancer overall [15].

neural

An important distinction of this study from previous
works is the open-source analysis conducted using the R
programming environment. The proposed algorithm
demonstrates that the stochastic gradient boosting (SGB)
model achieves high classification performance for
distinguishing between benign and malignant breast
cancer. Consequently, it is recommended that the SGB
architecture be considered for applications in breast
cancer classification.

While the model shows excellent classification
performance, there is still room for improvement. The
system can be enhanced by incorporating more data or
experimenting with other ensemble learning techniques
to further boost its validity and reliability. This approach
aims to provide high-precision diagnostic results and
could potentially be integrated into clinical decision-
making processes for better patient outcomes.

Conclusion

Negative emotional reactions, such as anger and fear, to
stressful life events, are normal, temporary responses to
perceived threats and do not necessarily indicate a
psychopathological condition. In the case of breast
cancer, the emotional and psychological toll can be
profound, affecting patients’ health-related quality of
life. Psychological responses to the diagnosis and
treatment of breast cancer can evolve, with significant
fluctuations depending on the stage of treatment and
individual clinical circumstances. Patients often
experience considerable psychological strain, including
pain, fatigue, insomnia, and emotional stress that affects
their social interactions and activities [16].

In this study, a boosting algorithm paired with a k-fold
cross-validation method was utilized for classifying data
derived from digitized histopathological images of breast
cancer. The Stochastic Gradient Boosting method, an
ensemble learning approach, enabled highly accurate
classification results.

In conclusion, the study highlights that the boosting-
based model provided promising predictions for
classifying breast cancer (benign vs. malignant) and
could serve as a reliable tool for clinical breast cancer
diagnosis in the future.
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