
 

 
Society of Medical Education & Research 

 

2022, Volume 2, Issue 1, Page No: 17-23 

Copyright CC BY-NC-SA 4.0 

 

Predicting Breast Cancer Risk Using Stochastic Gradient Boosting 

Orhan Kayira1*  

1 Department of Biostatistics and Medical Informatics, Faculty of Medicine, Recep Tayyip Erdogan University, 

Rize, Turkey. 

*E-mail  Orhan.Kayira @erdogan.edu.tr 

 

 

Breast cancer is a major global health concern and ranks as one of the leading causes of cancer-related mortality in women. 

This research focuses on utilizing the stochastic gradient boosting (SGB) technique to classify breast cancer data from open-

access sources and identify key risk factors. The dataset was employed to develop a classification model, with SGB used for 

the disease classification process. The performance of the model was assessed using metrics such as accuracy, balanced 

accuracy, sensitivity, specificity, and both positive and negative predictive values. The SGB model achieved perfect results with 

100% in all key metrics, including accuracy, sensitivity, specificity, and the F1 score. Additionally, the study identified the most 

significant risk factors, including “cave_points_mean,” “area_worst,” “perimeter_worst,” and “concave_points_worst,” which 

were found to have the highest importance. The findings suggest that the SGB-based model can effectively differentiate between 

breast cancer patients and healthy individuals while also pinpointing critical risk factors, thus contributing to more accurate 

diagnosis and risk prediction. 
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Introduction  

Breast cancer remains a major public health issue 

worldwide and is among the most fatal cancers for 

women [1]. Early diagnosis is critical, as it can 

significantly influence treatment outcomes and patient 

survival. Traditional methods for diagnosing breast 

cancer typically begin with a physical examination, 

followed by a review of the patient’s medical history. 

Depending on the findings, further diagnostic tests such 

as mammography, breast ultrasound, and ductoscopy 

(which uses a fiber-optic device to examine milk ducts) 

may be performed. Additional methods like ductography 

(contrast imaging of the ducts) and magnetic resonance 

imaging (MRI) may also be employed when necessary 

[2]. 

Data mining, also known as knowledge discovery from 

large datasets, plays a key role in identifying patterns and 

making predictions based on hidden data relationships 

[3]. Machine learning algorithms, which focus on 

classification, regression, and association rule mining, 

enable systems to learn from historical data and make 

predictions on new data during the validation and testing 

phases [4]. 

This research aims to apply the stochastic gradient 

boosting (SGB) method to differentiate between patients 

with and without breast cancer. Additionally, the study 

seeks to identify significant risk factors for breast cancer 

and assess the importance of these factors concerning 

cancer diagnosis. 

Materials and Methods  

Dataset 

The dataset for this study was sourced from the UCI 

Machine Learning Repository (available at 
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https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+

Wisconsin+%28Diagnostic%29) and was used to predict 

the presence or absence of breast cancer through the SGB 

method [5]. The data includes features derived from fine 

needle aspiration (FNA) biopsies of breast masses, with 

each feature representing characteristics of the cell nuclei 

in the image. Key attributes include an ID number, the 

diagnosis (M = malignant, B = benign), and ten 

quantitative features describing the shape and texture of 

the cell nuclei. These features include the mean radius 

(distance from the center to the perimeter), texture 

(variability in gray-scale values), perimeter, area, 

smoothness (variation in radius), compactness 

(perimeter^2 / area - 1.0), concavity (depth of 

indentations on the contour), concave points (number of 

indentations), symmetry, and fractal dimension 

(approximates the complexity of the shape). For each 

image, the mean, standard error, and worst (maximum of 

the three highest values) of these characteristics were 

computed, leading to 30 features in total. For example, 

“field 3” corresponds to the mean radius, “field 13” 

represents the standard error of the radius, and “field 23” 

denotes the worst radius. The data entries are recorded 

with four decimal places, and there are no missing values. 

The dataset consists of 63% benign cases (357) and 37% 

malignant cases (212). 

Stochastic gradient boosting 

Boosting, an ensemble learning strategy serves as a meta-

classifier and is utilized for predictive modeling [6]. 

Stochastic gradient boosting (SGB), introduced by 

Schapire [7], is an important tool for improving 

prediction accuracy and is particularly beneficial in 

classification tasks when combined with preprocessing 

steps. Commonly used methods like XGB, SGB, and 

Lasso are particularly popular in the realm of breast 

cancer and mammography research and are also highly 

effective in identifying significant predictive variables 

within health-related datasets. These techniques are ideal 

when working with complex interactions among 

variables that may be nonlinear or have high 

dimensionality [8]. SGB implementation was achieved 

using R’s Generalized Boosted Regression Models 

(GBM) package [9]. Key parameters for fine-tuning the 

SGB classifier include values for n.trees, shrinkage, and 

n.minobsinnode. 

Data analysis 

To test for multivariate normality, the Henze-Zirkler test 

was employed. For summarizing quantitative data, 

median values (along with minimum and maximum 

ranges) were used, while categorical variables were 

reported in terms of counts and percentages. The Mann-

Whitney U test was used to assess whether there were 

significant differences in the target variable. 

Relationships between the variables were analyzed using 

the Spearman correlation coefficient. Model fitting was 

evaluated via the Likelihood Ratio Test, with a 

significance level set at P < 0.05. IBM SPSS Statistics 

26.0 was the software used for the analysis. 

Modeling 

SGB, as one of the machine learning algorithms, was 

employed in this study’s modeling process. The analysis 

was conducted using the 100 repeated bootstrap method. 

Performance was evaluated through various metrics, 

including balanced accuracy, accuracy, sensitivity, 

specificity, positive/negative predictive values, and F1-

score. To optimize parameters, grid search was applied, 

with surface selection used to determine the optimal 

depth. The 5-fold cross-validation method was utilized 

for resampling. 

Results and Discussion  

The dataset consisted of 357 (63%) benign and 212 

(37%) malignant breast cancer patients. Figure 1 

displays the distribution of the variables. 

 

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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Figure 1. Distributions of the variables 

 

Descriptive statistics for the variables analyzed in this 

research are shown in Table 1 

A notable difference was observed between the diagnosis 

groups for all variables, except radius_mean, 

fractal_dimension_mean, and smoothness_se, where no 

significant variation was found (P < 0.001). 

Table 1. Descriptive statistics for variables 

Variables 

Breast Cancer 

P-value Bening (357) Malignant (212) 

Median (Min-Maks) Median (Min-Maks) 

Radius_mean 21.1 (6.9-47.4) 19.4 (13.0-44.9) 0.108 

Texture_mean 19.2 (13.1-47.0) 22.2 (14.2-44.9) < 0.001 

Perimeter_mean 78.1 (43.7-114.6) 114.2 (71.9-188.5) < 0.001 

Area_mean 458.4 (143.5-992.1) 932.0 (361.6-2501) < 0.001 

Smoothness_mean 0.09 (0.05-0.16) 0.1 (0.07-0.14) < 0.001 

Compactness_mean 0.08 (0.02-0.22) 0.13 (0.05-0.35) < 0.001 

Concavity_mean 0.04 (0.0-0.41) 0.15 (0.02-0.43) < 0.001 

Concave points_mean 0.02 (0.0-0.09) 0.09 (0.02-0.2) < 0.001 

Symmetry_mean 0.17 (0.11-0.27) 0.19 (0.13-0.3) < 0.001 

Fractal_dimension_mean 0.06 (0.05-0.1) 0.06 (0.05-0.1) 0.612 

Radius_se 0.26 (0.11-0.88) 0.54 (0.19-1.35) < 0.001 

Texture_se 1.14 (0.36-1.76) 1.14 (0.36-1.67) < 0.001 

Perimeter_se 1.94 (0.76-4.56) 3.84 (1.33-4.67) < 0.001 

Area_se 23.24 (6.8-47.1) 60.01 (13.99-44.83) < 0.001 

Smoothness_se 0.01 (0.0-0.02) 0.01 (0.0-0.03) 0.749 

Compactness_se 0.02 (0.0-0.11) 0.03 (0.01-0.14) < 0.001 

Concavity_se 0.02 (0.0-0.4) 0.04 (0.01-0.14) < 0.001 

Concave points_se 0.01 (0.0-0.05) 0.01 (0.01-0.04) < 0.001 

Symmetry_se 0.02 (0.01-0.06) 0.02 (0.01-0.08) 0.018 

Fractal_dimension_se 0.0 (0.0-0.03) 0.0 (0.0-0.01) 0.007 

 



Kayira                                                                                             Arch Int J Cancer Allied Sci, 2022, 2(1):17-23  
 

 

20 

The correlation matrix is presented in Figure 2 of this 

study, which includes a series of numerical values 

ranging from -1 to 1. A value of 1 indicates a strong 

positive correlation between variables, such as mean 

radius and area. A correlation of 0 implies no relationship 

between variables, like radius_mean and 

fractal_dimension_se. A value of -1 suggests a perfect 

negative correlation, although, in this study, the 

correlation between radius_mean and 

fractal_dimension_mean is -0.3, indicating a weak 

negative relationship. This negative correlation still 

reflects an inverse relationship. The data shows a 

minimal or no correlation between radius_mean and 

concavity_mean, but it is statistically significant (r = -

0.0917, P = 0.029). This might be due to the large sample 

size, though the clinical relevance could be questioned. 

Similarly, no significant correlation was found between 

radius_mean and texture_mean (r = -0.0113, P = 0.789), 

but there is a weak positive and statistically significant 

relationship between texture_mean and texture_worst (r 

= 0.2318, P < 0.001). Similar interpretations can be made 

for other variable relationships. 

 
Figure 2. Correlation matrix of variables 

The results for the SGB model's performance metrics are 

shown in Table 2. All performance metrics, including 

accuracy, balanced accuracy, sensitivity, specificity, 

positive predictive value, negative predictive value, and 

F1 score, reached 100%. The model’s fit was assessed 

using the likelihood ratio tests (chi-square = 751.44, df = 

1, P-value < 0.001). 

Table 2. Performance metrics of the SGB model 

Metric Value (%) 

Accuracy 100 

Balanced Accuracy 100 

Sensitivity 100 

Specificity 100 

Positive predictive value 100 

Negative predictive value 100 

F1 score 100 
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Variable importance obtained as a result of SGB 

modeling is given in Table 3. Figure 3 shows the 

importance levels of genes that are important for the SGB 

model. 

Table 3. Variable importance of SGB 

Variable Importance Variable Importance 

Cave.points_mean 100 Radius_se 0.22 

Area_worst 68.18 Compactness_mean 0.22 

Perimeter_worst 32.19 Smoothness_mean 0.21 

Concave.points_worst 24.78 Symmetry_mean 0.18 

Texture_worst 8.18 Concave.points_se 0.14 

Texture_mean 2.67 Perimeter_se 0.14 

Smoothness_worst 2.23 Smoothness_se 0.11 

Area_se 1.66 Radius_worst 0.09 

Concavity_worst 1.46 Fractal_dimension_worst 0.08 

Compactness_worst 1.44 Concavity_se 0.07 

Symmetry_worst 1.33 Fractal_dimension_se 0.06 

Texture_se 1,00 Perimeter_mean 0.001 

Symmetry_se 0.72 Concavity_mean 0.001 

Fractal_dimension_mean 0.50 Area_mean 0.00 

Compactness_se 0.37 Radius_mean 0.00 

 

 

Figure 3. Variable importance of SGB 

 

This study focused on developing a model for accurately 

distinguishing between benign and malignant breast 

cancer cells using stochastic gradient boosting (SGB) and 

digitized data from fine needle aspiration (FNA) images 

of breast mass samples. 

Although machine learning techniques have shown 

strong performance in classifying breast cancer 

histopathological images, the effectiveness of these 

models can be impacted by the size of the data and the 

complexity of the model architecture. Ensemble learning 

techniques, a specific branch of machine learning, offer 

advantages over traditional methods due to their layered 

approach, which tends to improve classification 

performance for cancer detection. This enhanced 
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performance is a significant reason why ensemble 

learning is gaining popularity in medical fields. 

In a recent study, various classification methods, such as 

support vector machines, k-nearest neighbors, and 

probabilistic neural networks, were employed to 

differentiate between benign and malignant breast 

tumors. These methods incorporated feature selection 

techniques like signal-to-noise ratio sequencing, forward 

selection, and principal component analysis. The support 

vector machine classifier demonstrated impressive 

diagnostic accuracy, achieving 98.80% and 96.33% 

accuracy in distinguishing tumors from two widely used 

breast cancer datasets [10]. 

A different study compared the performance of two 

classifiers, Naive Bayes (NB) and k-nearest neighbors 

(KNN), for breast cancer classification. When evaluated 

using cross-validation, the KNN classifier yielded the 

highest accuracy of 97.51%, followed by NB at 96.19% 

[11]. 

In another paper, a comparison was made between 

different machine learning algorithms— support vector 

machine (SVM), decision trees (C4.5), Naive Bayes 

(NB), and k-nearest neighbor (k-NN)—using the 

Wisconsin breast cancer dataset. The results indicated 

that SVM outperformed the others with an accuracy of 

97.13% and the lowest error rate. All experiments were 

performed using the WEKA data mining tool in a 

simulated environment [12]. 

Similarly, Aamir et al. developed a model to classify 

breast cancer risk using various supervised machine 

learning algorithms, including SVM, random forest, 

gradient boosting, artificial neural networks, and 

multilayer perceptron models. Their results showed that 

the multilayer perceptron model achieved the highest 

accuracy at 99.12%, outperforming all other models 

tested [13]. 

Another study focused on predicting breast cancer 

survival by using machine learning models to identify 

key prognostic indicators. Among the models evaluated, 

random forests provided the highest accuracy at 82.7%, 

surpassing other models like decision trees, which 

showed lower performance [14]. Similarly, Mirsadeghi 

et al. [15] employed ensemble learning algorithms to 

identify driver genes in metastatic breast cancer. The use 

of algorithms like SVM, ANN, Random Forest, and 

EARN resulted in outstanding performance, with ROC-

AUC scores of 99.24% for metastatic breast cancer and 

99.79% for breast cancer overall [15]. 

An important distinction of this study from previous 

works is the open-source analysis conducted using the R 

programming environment. The proposed algorithm 

demonstrates that the stochastic gradient boosting (SGB) 

model achieves high classification performance for 

distinguishing between benign and malignant breast 

cancer. Consequently, it is recommended that the SGB 

architecture be considered for applications in breast 

cancer classification. 

While the model shows excellent classification 

performance, there is still room for improvement. The 

system can be enhanced by incorporating more data or 

experimenting with other ensemble learning techniques 

to further boost its validity and reliability. This approach 

aims to provide high-precision diagnostic results and 

could potentially be integrated into clinical decision-

making processes for better patient outcomes. 

Conclusion 

Negative emotional reactions, such as anger and fear, to 

stressful life events, are normal, temporary responses to 

perceived threats and do not necessarily indicate a 

psychopathological condition. In the case of breast 

cancer, the emotional and psychological toll can be 

profound, affecting patients’ health-related quality of 

life. Psychological responses to the diagnosis and 

treatment of breast cancer can evolve, with significant 

fluctuations depending on the stage of treatment and 

individual clinical circumstances. Patients often 

experience considerable psychological strain, including 

pain, fatigue, insomnia, and emotional stress that affects 

their social interactions and activities [16]. 

In this study, a boosting algorithm paired with a k-fold 

cross-validation method was utilized for classifying data 

derived from digitized histopathological images of breast 

cancer. The Stochastic Gradient Boosting method, an 

ensemble learning approach, enabled highly accurate 

classification results. 

In conclusion, the study highlights that the boosting-

based model provided promising predictions for 

classifying breast cancer (benign vs. malignant) and 

could serve as a reliable tool for clinical breast cancer 

diagnosis in the future. 
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