

2023, Volume 3, Issue 1, Page No: 35-39 Copyright CC BY-NC-SA 4.0

Society of Medical Education & Research

Archive of International Journal of Cancer and Allied Science

A Systematic Analysis of Observational Research on the Malignant Transformation Rate in Oral Submucous Fibrosis, an Oral Potentially Malignant Disorder

Shilpa Syam^{1*}, T.N Uma Maheswari²

- ¹ Department of Oral Medicine, Radiology & Special Care Dentistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Chennai, India.
 - ² Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Chenna, India.

*E-mail ⊠ shilpaskottoor@gmail.com

Abstract

Oral submucous fibrosis, which is considered a potentially malignant disorder, progresses gradually and often goes unnoticed due to its subtle onset. This chronic condition carries a measurable risk of developing into oral squamous cell carcinoma, a risk quantified through what is known as the malignant transformation rate. The reported figures for this transformation have varied widely across different demographic and clinical studies. To further investigate this issue, the present review systematically evaluated observational studies to assess the malignant transformation rate associated with oral submucous fibrosis and to pinpoint contributing Risk factors. A detailed database search was executed using MeSH terms and targeted keywords within PubMed, Cochrane, Science Direct, and Google Scholar. From an initial collection of 190 records, only 7 studies met the eligibility standards after screening. The malignant transformation rate observed across these selected publications spanned from 3.72% to 38.15%. Among the identified risk factors, habitual betel quid consumption emerged most prominently in association with cancer progression. Interestingly, the rates identified in this review exceed the commonly cited transformation statistics, signaling a need for heightened clinical alertness. Routine biopsy is crucial when managing such lesions to exclude underlying dysplastic or malignant alterations. A notable lack of long-term follow-up studies—particularly among Indian populations—was also observed, indicating a pressing gap in existing research and a need for more extensive research in this field.

Keywords: Risk factors, Oral potentially malignant disorder, Malignant transformation rate, Oral submucous fibrosis, Follow-up

Introduction

Oral submucous fibrosis (OSMF), initially reported in 1952 [1], is acknowledged as a chronic and progressively worsening precancerous disorder that affects both the oral cavity and pharynx. The primary agent implicated in its etiology is arecoline, a component of the areca nut [2]. Clinically, OSMF manifests through mucosal pallor, a

Access this article online

Website: https://smerpub.com/ E-ISSN: 3108-4834

Received: 07 March 2023; Revised: 27 May 2023; Accepted: 04 June 2023

How to cite this article: Syam S, Maheswari TNU. A Systematic Analysis of Observational Research on the Malignant Transformation Rate in Oral Submucous Fibrosis, an Oral Potentially Malignant Disorder. Arch Int J Cancer Allied Sci. 2023;3(1):35-9. https://doi.org/10.51847/ZBLPUVhycg

persistent burning sensation, thickening of the oral lining, and increasing fibrosis, ultimately resulting in trismus, which compromises speech and deglutition [3]. Globally, areca nut chewing ranks as the fourth most widespread substance use habit [4], commonly consumed in blends that may include betel quid, tobacco, and slaked lime. The usage patterns show significant variation across different regions within India and other countries [5]. Various studies across distinct populations have attempted to quantify the malignant transformation rate (MTR) of OSMF. While one investigation recorded a 7.6% transformation rate after a 17-year follow-up, another Indian study reported a considerably lower MTR of 2.6% [5]. According to IARC, the highest observed MTR in India remains at 7.6% [6]. Evaluating the malignant potential of Oral potentially malignant disorders such as OSMF is vital for clinicians to ensure early diagnosis and timely management, which can markedly enhance patient outcomes. This review, therefore, seeks to consolidate findings on the malignant transformation rate of OSMF and identify the associated risk factors.

Materials and Methods

Prior approval was secured from the institutional scientific review board at Saveetha Dental College, under the Saveetha Institute of Medical and Technical Sciences, Chennai. A literature search targeting the period from 2014 to 2019 was carried out across multiple databases including PubMed, Cochrane Library, Science Direct, and Google Scholar. The inclusion criteria focused on observational follow-up studies specifically examining OSMF cases for Malignant transformation, as well as studies on oral potentially malignant disorders encompassing OSMF with reported MTR values. Studies

were excluded if they followed an interventional design, lacked follow-up data on MTR in OSMF, or were centered on other types of oral potentially malignant disorders without specific reference to OSMF.

Results and Discussion

All selected studies were analyzed to determine the overall malignant transformation rate as well as the annual transformation figures (ATR) (**Table 1**). Among the cumulative total of 5,043 documented OSMF lesions/cases across the seven studies reviewed, 706 instances progressed to malignancy. These studies also examined correlations between malignant transformation and variables such as the type, duration, and frequency of harmful habits (**Table 2**). The methodological quality of the studies was evaluated using the BSA Medical Sociology Group's assessment tool for cross-sectional research.

Table 1. Characteristics of included studies—malignant transformation rate

					υ		
Author, country, year	Study type	Clinical grading of OSMF	Number of cases/ lesions followed up	Follow-up duration- mean years (range)	Number of cases/lesions with malignant transformation (n)	Overall malignant transformation %	Annual transformation rate (ATR)
Chuang et al., Taiwan, 2018	P/ C	N/A	2,333	5.7	114	7.69 % [76.9 per 1,000 (cumulative risk in 9 years)]	8.6 per 1,000
Yang et al., Taiwan, 2017	P/H	N/A	778	6	71	9.13%	NA
Chien-Yang Yeh et al., Taiwan, 2016	P/H	N/A	9	10	1	11%	NA
Mohiuddin et al., Pakistan, 2016	P/H	N/A	765	8	472	38.15%	NA
Jayasinghe etal., Sri Lanka, 2015	R/H	Yes	135	5.26	8	5.90%	NA
Nayak et al., India, 2015	R/H	N/A	29	3.16	3	10.34%	NA
Wang et al., Taiwan, 2014	R/H	N/A	994	9	37	3.72%	NA

P: prospective study, R: retrospective study, H: hospital-based, C: Cohort

Table 2. MTR and risk habits

	Habit and malignant transformation								
Author,	Habit groups	Frequency o	f habits	Duration of habits					
country, year	Groups	Sample	MT (%)	Frequency	MT (%)	Duration	MT(%)		
Chuang et al., Taiwan, 2018	1. Ever betel nut chewing	2013	8.9%						
	2. Ever cigarette smoking	2138	8.4%						
	3. Ever alcohol drinking	1539	10.0%						
	4. Betel nut chewing and cigarette	572	NA	NA	NA	NA	NA		
	smoking	113	NA						
	5. Betel nut chewing and alcohol	110	NA						
	drinking		NA						

	6. Cigarette smoking and alcohol						
	drinking						
	7. Having three habits						
Yang <i>et al.</i> , Taiwan, 2017	NA	NA	NA	NA	NA	NA	NA
Chien-Yang	1. Alcohol	NA	NA		NA	NA	NA
Yeh et al.,	2. Betel			NA			
Taiwan, 2016	3. Smoking						
Mohiuddin <i>et</i> al., Pakistan, 2016	Areca nut only Betel quid with tobacco Betel quid without A. Tobacco	NA	22.9% 48.3% 11.7%	NA	NA	NA	NA
	5. Naswar 6. No habits		7.6% 9.5%				
Jayasinghe <i>et al.</i> , Sri Lanka, 2015	1. Areca nut only 2. Betel quid 3. Betel quid only 4. Betel quid and smoking 5. Betel quid and alcohol 6. Betel, smoking, and alcohol	5 130 80 10 21 19	0.0% 50.0% 12.5% 12.5% 25.0%	< 5 quids/d 5-10 quids/d 11-15 quids/d 16-20 quids/d > 20 quids/d	33.3% 33.3% 33.3% 0.0% 0.0%	0-5 yrs 6-10 yrs 11-15 yrs 16-10 yrs 21-15 yrs > 25 yrs	0.0% 16.7% 0.0% 83.3% 0.0% 0.0%
Nayak <i>et al.</i> , India, 2015	 Tobacco chewing Alcohol Smoking 	NA	NA*	NA	NA	NA	NA
Wang et al., Taiwan, 2014	Alcohol drinking Betel quid chewing Cigarette smoking	728 879 857	NA*	NA	NA	NA	NA

This systematic review sought to compile and analyze data from observational studies to determine the malignant transformation rate (MTR) of oral submucous fibrosis (OSMF). Although a widely cited hospital-based investigation from Taiwan previously reported an MTR range of 7–13% [7], our review uncovered a considerably broader spectrum of transformation rates, spanning from 3.72% to as high as 38.15%, based on findings from seven studies conducted in varied demographic settings. Among these, the study by Wang et al. [8] documented the lowest MTR at 3.72%, followed sequentially by Jayasinghe et al. [9] at 5.90%, Chuang et al. [10] at 7.69%, Yang et al. [11] at 9.13%, Nayak et al. [12] at 10.34%, and Chien-Yang Yeh et al. [13] at 11.0%. The most extreme rate was recorded by Mohiuddin et al. [14], who reported a striking MTR of 38.15% in their multicentric analysis involving both private and public tertiary healthcare centers in Pakistan. Their study monitored 765 patients diagnosed with OSMF, of whom 472 progressed to oral squamous cell carcinoma (OSCC) during a mean follow-up period of eight years. The follow-up durations in the remaining studies ranged between 3.6 and 10 years.

The annual transformation rate (ATR) offers a more dynamic view of the progression timeline and serves as an important tool for oral medicine practitioners when evaluating patient prognosis [15]. Within the reviewed literature, only the investigation conducted by Chuang *et al.* [10] explicitly reported an ATR, noting 8.6 malignancies per 1000 person-years; the rest limited their findings to cumulative MTR values.

The longstanding association of OSMF with areca nut and betel quid chewing has been well-established, particularly in the context of increasing oral cancer incidence among affected individuals [16–18]. Numerous studies, including those in this review, underscore the carcinogenic potential of betel quid when combined with tobacco, often displaying a dose-response relationship [19]. Jayasinghe et al. [9] categorized participants according to their primary chewing habit either areca nut or betel quid-and further subdivided betel quid users based on coexisting habits such as tobacco smoking or alcohol consumption. Interestingly, the highest MTR was noted among those who chewed only betel quid, while individuals who exclusively consumed areca nut did not experience malignant progression. In contrast, Mohiuddin *et al.* [14] excluded alcohol and cigarette use from their classification and instead categorized patients based on five habit types: areca nut alone, betel quid with tobacco, betel quid without tobacco, naswar, and those without any known risk habits. Their findings showed the highest MTR in the group consuming betel quid with tobacco, followed by the areca nut-only group.

A more nuanced classification of Risk factors was demonstrated in the study by Chuang *et al.* [10], where patients were grouped according to single and combined habits. Although this design offered valuable insight into habit interactions, MTRs for the groups with multiple concurrent habits were not individually specified. The role of habit frequency and duration in influencing MTR is well-recognized; however, most studies did not document these variables. Only Jayasinghe *et al.* [9] incorporated this dimension, stratifying betel quid users based on the daily number of quids consumed and the duration of usage, ranging from less than a year to over 25 years. Their results, however, indicated no statistically significant variation in MTR relative to the frequency of quid consumption.

Conclusion

The range of malignant transformation rate (MTR) for Oral submucous fibrosis (OSMF), as identified across the seven observational studies included in this review, extended from 3.72% to 38.15%. Among the contributing Risk factors, betel quid chewing emerged as the most prominent habit associated with an elevated risk of progression to malignancy.

Acknowledgments: None

Conflict of Interest: None

Financial Support: None

Ethics Statement: None

References

 Passi D, Bhanot P, Kacker D, Chahal D, Atri M, Panwar Y. Oral submucous fibrosis: Newer proposed classification with critical updates in pathogenesis and management strategies. Natl J Maxillofac Surg. 2017;8(2):89-94.

- 2. Rao NR, Villa A, More CB, Jayasinghe RD, Kerr AR, Johnson NW. Oral submucous fibrosis: a contemporary narrative review with a proposed inter-professional approach for an early diagnosis and clinical management. J Otolaryngol Head Neck Surg. 2020;49(1):3.
- Shih YH, Wang TH, Shieh TM, Tseng YH. Oral Submucous Fibrosis: A review on etiopathogenesis, diagnosis, and therapy. Int J Mol Sci. 2019;20(12):2940.
- Tungare S, Myers AL. Retail availability and characteristics of addictive areca nut products in a US Metropolis. J Psychoactive Drugs. 2021;53(3):256-71.
- Murti PR, Bhonsle RB, Pindborg JJ, Daftary DK, Gupta PC, Mehta FS. Malignant transformation rate in oral submucous fibrosis over a 17-year period. Community Dent Oral Epidemiol. 1985;13(6):340-1
- World Health Organization, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer. Betelquid and areca-nut chewing and some areca-nutderived nitrosamines. IARC; 2004.
- Hsue SS, Wang WC, Chen CH, Lin CC, Chen YK, Lin LM. Malignant transformation in 1458 patients with potentially malignant oral mucosal disorders: a follow-up study based in a Taiwanese hospital. J Oral Pathol Med. 2007;36(1):25-9.
- Wang YY, Tail YH, Wang WC, Chen CY, Kao YH, Chen YK, et al. Malignant transformation in 5071 southern Taiwanese patients with potentially malignant oral mucosal disorders. BMC Oral Health. 2014;14(1):1-9.
- Jayasinghe R, Manoja K, Gunasinghe M, Gurusinghe S, Sitheeque M, Hettiarachchi R, et al. An analysis of rate and factors affecting malignant transformation of oral submucous fibrosis in patients attending the Oral Medicine Clinic, Dental Hospital Peradeniya, Sri Lanka-A retrospective study. Sri Lanka J Med. 2015;24(2):3-10.
- Chuang SL, Wang CP, Chen MK, Su WW, Su CW, Chen SL, et al. Malignant transformation to oral cancer by subtype of oral potentially malignant disorder: A prospective cohort study of Taiwanese nationwide oral cancer screening program. Oral Oncol. 2018;87:58-63.
- Yang PY, Chen YT, Wang YH, Su NY, Yu HC, Chang YC. Malignant transformation of oral

- submucous fibrosis in Taiwan: a nationwide population-based retrospective cohort study. J Oral Pathol Med. 2017;46(10):1040-5.
- 12. Nayak S, Goel MM, Makker A, Bhatia V, Chandra S, Kumar S, et al. Fibroblast growth factor (FGF-2) and its receptors FGFR-2 and FGFR-3 may be putative biomarkers of malignant transformation of potentially malignant oral lesions into oral squamous cell carcinoma. PLoS One. 2015;10(10):e0138801.
- 13. Yeh CY, Lin CL, Chang MC, Chen HM, Kok SH, Chang SH, et al. Differences in oral habit and lymphocyte subpopulation affect transformation of patients with oral precancer. J Formos Med Assoc. 2016;115(4):263-8.
- 14. Mohiuddin S, Fatima N, Hosein S, Hosein M. High risk of malignant transformation of oral submucous fibrosis in Pakistani females: A potential national disaster. J Pak Med Assoc. 2016;66(11):1362-6.
- 15. Evren I, Brouns ER, Wils LJ, Poell JB, Peeters CFW, Brakenhoff RH, et al. Annual malignant transformation rate of oral leukoplakia remains consistent: A long-term follow-up study. Oral Oncol. 2020;110:105014.
- 16. Elmahi OM, Aldai SM, Alhassan GS, Adam GB, Eltayeb LB, Waggiallah HA. Alterations Caused by Hormonal Contraceptives on Cytomorphometric of Buccal Mucosa Detected by Computer-Assisted Method. Int J Pharm Phytopharmacol Res. 2020;10(5):129-35.
- 17. Pham DT, Ninh NT, Hoang TN, Pham CT, Nguyen LH, Tran TQ, et al. The Effectiveness of Oral Nutritional Supplements Improves the Micronutrient Deficiency of Vietnamese Children with Stunting. Arch Pharm Pract. 2020;11(1):7-13
- 18. Harouak H, Ibijbijen J, Nassiri L. Comparison between Medicinal Plants Used Against Oral Diseases and Pharmaceutical Dental Products In Morocco. Ann Dent Spec. 2019;7(2):1-4.
- 19. World Health Org., Betel-Quid and Areca-Nut, 100-E-10 IARC Monograph. 2018. Available from: https://monographs.iarc.fr/ENG/https://monographs .iarc.who.int/wp
 - content/uploads/2018/06/mono100E-10.pdf