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Gastric cancer (GC) remains one of the most prevalent and fatal cancers worldwide, with high rates of both incidence and 

mortality. Unfortunately, most patients are diagnosed at advanced stages, often through routine screenings, missing the best 

time for intervention. In this research, weighted gene co-expression network analysis (WGCNA) was used to identify key gene 

modules and hub genes associated with GC. Using the “limma” package in R, differentially expressed genes (DEGs) were 

examined from TCGA’s GC dataset, resulting in the identification of 4892 DEGs. To better understand their biological roles, 

Gene ontology (GO) enrichment and KEGG pathway analysis were performed, which revealed that the DEGs were strongly 

involved in processes such as extracellular matrix organization, DNA replication, the cell cycle, and the p53 signaling pathway. 

WGCNA was also applied to identify gene modules associated with clinical characteristics in both GC and normal tissue 

samples. Six distinct gene modules were identified, with two showing significant association with GC. Hub genes in these 

modules were determined through survival and expression analyses. In addition, one-way ANOVA was used to examine how 

these hub genes were expressed across different stages of GC compared to normal tissues. This analysis revealed 19 genes with 

significant differential expression and positive prognosis implications. These hub genes showed significant differences in 

expression levels between normal and different GC stages, highlighting their potential as biomarkers for early detection of GC 

and as valuable tools to aid in diagnosis at earlier stages. 
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Introduction 

Gastric cancer (GC), a type of cancer that originates from 

the stomach’s epithelial cells or its surface glands, 

continues to be one of the most common and lethal 

cancers worldwide [1]. According to the 2020 

GLOBOCAN report, GC is responsible for being the fifth 

most prevalent cause of cancer diagnoses and the fourth 

leading cause of cancer-related deaths globally [2]. This 

disease arises from multiple factors, such as diet, 

Helicobacter pylori infections, obesity, and genetics, all 

of which contribute to its development [3, 4]. GC is 

associated with high rates of metastasis, incidence, and 

mortality. However, early detection is often missed, 

leading to low rates of survival and the inability to 

perform radical surgical treatments. Furthermore, GC 

incidence and mortality are rising, particularly among 

younger populations [5-7]. Since early-stage GC tends to 

be asymptomatic, a majority of patients are diagnosed 

only at later stages of the disease, which results in more 

limited treatment options. Around 70% of cases are 
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discovered after they have advanced beyond the point of 

early intervention [6]. Therefore, early diagnosis and 

treatment are crucial, which calls for the identification of 

biomarkers that can improve early detection and patient 

outcomes. 

Weighted gene co-expression network analysis 

(WGCNA) is a powerful method for analyzing gene 

expression data across different samples. This technique 

groups genes with similar expression profiles into 

modules and links them with clinical traits, allowing the 

identification of important genes within those modules 

[8-10]. WGCNA has been successfully used in various 

cancer studies to pinpoint key genes involved in the 

progression and prognosis of cancers, including breast 

cancer, colorectal cancer, and renal cell carcinoma, 

aiding in the development of new diagnostic and 

therapeutic strategies [11-13]. 

In this research, we combined WGCNA with other 

analytical tools to examine clinical and RNA sequencing 

data from gastric cancer patients available in the TCGA 

database. We aimed to identify critical genes that are 

linked to clinical factors such as disease status 

(tumor_normal), gender, and pathologic features (T 

stage, stage, vital status, and initial weight). The results 

identified several potential hub genes that could serve as 

biomarkers or therapeutic targets for early-stage GC, 

providing a theoretical framework for improving 

diagnostic and therapeutic practices for this challenging 

disease. 

Materials and Methods 

Data acquisition and processing 

RNA sequencing profiles and associated clinical data 

were retrieved from the TCGA repository via the UCSC 

Xena platform (https://tcga.xenahubs.net), which is 

hosted by the University of California, Santa Cruz 

(http://xena.ucsc.edu/) [14]. This dataset comprised 380 

gastric cancer (GC) tissue samples alongside 37 normal 

tissue samples. To evaluate the overall data distribution 

and structure, we employed principal component analysis 

(PCA) as an initial screening method [15-19]. Outliers 

and inconsistent samples identified through PCA were 

removed to enhance the robustness and accuracy of 

subsequent analyses (Figure 1). 

 

 
Figure 1. Workflow of searching hub genes in GC. 

 

Identification of clinically significant modules 

The construction of a gene co-expression network from 

the differentially expressed genes (DEGs) was carried 

out using the “WGCNA” R package (version 1.70-3) [8, 

10]. The process began with the application of the 

flashClust tool in R, which was used to perform 
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hierarchical clustering on the samples and to identify any 

potential outliers. Next, the Pearson correlation 

coefficient (PCC) was computed for each gene pair to 

evaluate the level of co-expression. To ensure that the 

resulting network adhered to a scale-free topology, an 

optimal soft threshold power (β) was determined using 

the pickSoftThreshold function. Once β was selected, a 

weighted adjacency matrix (AM) was generated using a 

power transformation, where the connection strength 

(amn) between gene m and gene n was calculated by 

raising the absolute PCC (cmn) to the β power, as outlined 

in Eq 1: 

amn = |cmn|β (1) 

In this context, amn represents the degree of adjacency 

between two genes, cmn is the Pearson correlation 

coefficient between them, and β denotes the soft 

thresholding power. The resulting AM was then 

converted into a topological overlap matrix (TOM), 

which was derived using the adjacency function as shown 

in Eq 2. In this formulation, lmn is defined as the 

cumulative sum of the products of adjacency values 

between shared neighboring genes of m and n, while km 

and kn represent the total connectivity of gene m and gene 

n with all other nodes in the network. The TOM was 

computed using the following equation: 

 𝑇𝑂𝑀𝑚𝑛 =
𝑙𝑚𝑛+𝑎𝑚𝑛

min(𝑘𝑚+𝑘𝑛)+1−𝑎𝑚𝑛
 (2) 

To group genes with comparable expression 

characteristics into distinct modules, average linkage 

hierarchical clustering was carried out using a 

dissimilarity metric derived from the topological overlap 

matrix, calculated as (1 − TOM). A minimum module 

size was defined, allowing no fewer than 30 genes per 

module, while a merging threshold of 0.25 was applied 

to combine modules with highly similar expression 

patterns. The module eigengene (ME), defined as the 

leading principal component of each module, was used to 

summarize the overall expression trend within that 

module. To identify modules most strongly associated 

with the clinical phenotype, Pearson’s correlation 

coefficient was computed between the ME values and the 

corresponding phenotype data, enabling the detection of 

modules with the highest degree of relevance to the 

clinical traits under investigation. 

Hub gene selection 

To pinpoint biologically meaningful hub genes, two core 

metrics were applied: gene significance (GS), indicating 

the strength of association between genes and clinical 

traits, and module membership (MM), representing the 

alignment between a gene and the rest of its module. Only 

genes exceeding specific GS and MM thresholds were 

considered for further investigation. To explore their 

biological relevance, analyses were carried out using 

GEPIA (http://gepia.cancer-pku.cn) [20], where both 

survival impact and expression variation were assessed. 

These evaluations focused on whether the selected genes 

influenced survival outcomes in gastric cancer (GC) 

patients and if their expression levels differed between 

early-stage tumors and normal tissues. Significance 

thresholds were set at P < 0.05 for survival analysis and 

P < 0.01 for evaluating expression differences. 

Evaluation of the diagnostic significance of hub genes 

A total of 241 TCGA-derived samples were utilized to 

examine the diagnostic potential of the hub genes. This 

analysis involved comparing gene expression in normal 

tissues with that across various GC pathological stages, 

taking into account clinical phenotype data. One-way 

ANOVA, performed using GraphPad Prism 8 software 

[21], was used to determine whether expression patterns 

of the hub genes varied significantly across disease 

stages. 

Results and Discussion 

Pre-processing of data and DEG selection 

Following the exclusion of 50 GC tumor samples and 26 

normal samples that could not be properly classified, the 

remaining samples were classified into GC tumor and 

normal groups using principal component analysis 

(PCA). The analysis showed that PC1 and PC2 explained 

8.8% and 5% of the total variance, respectively (Figures 

2a and 2b). A total of 4,892 genes were identified as 

differentially expressed between the GC and normal 

samples, with 3,043 genes being upregulated and 1,849 

downregulated (Figures 2c and 2d). 

 
a) 
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b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 2. DEGs identification and functional 

enrichment analysis in GC; (a) number of samples 

included in the study, (b) principal component 

analysis (PCA) results, (c) volcano plot 

representation: upregulated genes are marked with 

red dots, downregulated genes with purple dots, and 

genes with no significant change are in gray, (d) 

total count of differentially expressed genes 

(DEGs), (e) gene ontology (GO) enrichment 

analysis, (f) KEGG pathway enrichment analysis; 

the color of each dot represents the significance 

level of the enrichment, while the size corresponds 

to the number of genes involved in each enriched 

term, with the top 20 results listed based on the P-

value 

Gene ontology (GO) enrichment and KEGG pathway 

analysis of DEGs 

To explore the potential biological roles of the 

differentially expressed genes (DEGs) in gastric cancer 

(GC), we performed GO and KEGG pathway enrichment 

analyses. The GO analysis identified several biological 

processes consistently observed in prior research, 

including extracellular matrix organization, DNA 

replication, and the cell cycle, particularly DNA 

replication and nuclear DNA replication (Figure 2e) [22, 

23]. KEGG pathway analysis revealed several enriched 

pathways such as focal adhesion, proteoglycans in 

cancer, the impact of E. coli infection, apoptosis, cell 

cycle regulation, small cell lung cancer, p53 signaling, 

and ECM-receptor interactions (Figure 2f) [23, 24]. 

WGCNA and identification of key modules 

For the construction of a co-expression network, 

WGCNA was applied to the tumor and normal samples. 

The clustering of these samples resulted in distinct 
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branches, with no outliers identified (Figure 3a). Using 

a scale-free topology criterion of 0.9, a soft threshold (β) 

of 4 was selected (Figure 3b). Six different gene modules 

were identified: blue, green, yellow, brown, turquoise, 

and grey. The grey module, consisting of genes that did 

not fit well into any of the other groups, was excluded 

from further analysis (Figures 3c and 3d). Correlation 

analysis between these modules and clinical phenotypes 

revealed that the turquoise module (cor = 0.93, P = 8e-

107) had a strong positive correlation with GC, while the 

blue module (cor = -0.62, P = 6e-27) exhibited a negative 

correlation. These findings indicate that the turquoise 

module plays a significant role in GC development, while 

the blue module may offer protective effects against the 

disease. As a result, the turquoise and blue modules were 

selected for subsequent investigation. 

Hub gene identification and validation 

We examined the relationship between module 

membership (MM) and gene significance (GS) for both 

the blue and turquoise modules, revealing a strong 

positive correlation (Figures 3e and 3f). To identify hub 

genes, thresholds of |MM| > 0.8 and |GS| > 0.6 were set 

for the blue module, and |MM| > 0.8 and |GS| > 0.8 for 

the turquoise module. This process identified 89 genes in 

the blue module and 216 genes in the turquoise module. 

Survival analysis and comparison of gene expression 

levels in GC tissues versus normal tissues led to the 

identification of 19 hub genes (ASF1B, DPT, ZBTB16, 

WISP2, PRIMA1, EPCAM, PDZD4, ATP1A2, 

FAM83H, ABCA9, C8orf46, MAMDC2, TCEAL2, 

CEP55, LIMS2, LMOD1, PLP1, TMEM100, ADHFE1). 

These hub genes were found to be significantly 

associated with GC prognosis, and expression 

differences were observed between GC and normal 

tissues (Figures 4 and 5). 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 3. WGCNA analysis of DEGs in gastric 
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cancer (GC); (a) hierarchical clustering of GC and 

normal tissue samples based on clinical data, (b) 

analysis of the scale-free topology fit index and 

average gene connectivity across various soft 

threshold values (β), (c) dendrogram representing the 

clustering of DEGs based on the dissimilarity 

measure (1-TOM), (d) a heatmap showing the 

relationship between module eigengenes (ME) and 

different clinical traits in GC, (e, f) scatter plots 

illustrating the association between module 

membership (MM) and gene significance (GS) for 

genes in the turquoise (e) and blue (f) modules. 

 
Figure 4. Survival analysis of hub genes in gastric cancer (GC) 

 

This analysis examines the survival outcomes associated 

with 19 hub genes, showing a significant correlation with 

patient survival. The red line represents the high-

expression group of each gene, while the blue line 
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corresponds to the low-expression group. A P-value 

threshold of < 0.05 was considered statistically 

significant. 

 

 

 

 
Figure 5. Comparison of hub gene expression between GC and normal tissues  

 

The expression profiles of hub genes were evaluated 

using the GEPIA database, focusing on their levels in 

both GC and normal tissues. A significance level of *P < 

0.01 was applied to determine statistically relevant 

differences. 
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Early detection markers for gastric cancer (GC) 

Upon assessing the expression levels of the 19 identified 

hub genes at different stages of GC, we found that these 

genes exhibited notable differences between normal 

gastric tissues and those affected by early-stage GC. 

Specifically, genes such as ASF1B, FAM83H, EPCAM, 

and CEP55 had higher expression levels in early GC 

tissues compared to normal gastric tissue, whereas the 

expression of other genes was notably reduced in the 

early stages of cancer. These observations suggest that 

these hub genes may serve as crucial markers for the 

early identification of GC (Figure 6) [25]. ASF1B and 

CEP55, both previously implicated in cancer 

development, mitosis, and cytokinesis, were barely 

detectable in normal gastric tissues but showed elevated 

levels in tumor tissues, even at early stages. Conversely, 

genes such as PDZD4, ABCA9, ATP1A2, C8orf46, and 

TCEAL2 demonstrated high expression in normal gastric 

tissues but almost negligible expression in early GC 

(Table 1; Figure 6). The combination of these 19 hub 

genes—particularly ASF1B, CEP55, PDZD4, ATP1A2, 

ABCA9, C8orf46, and TCEAL2—offers substantial 

promise as biomarkers for the early detection of GC. 

 

Table 1. Functional roles of the 19 hub genes 

Gene Function Source PMIDs# 

ASF1B Involved in the progression of various cancers. 35362843; 21179005 

DPT 
A non-collagenous component of the extracellular matrix that 

modulates tumor cell growth and invasiveness. 
30391671; 25149533; 21796630 

ZBTB16 
Functions as a transcriptional repressor, inhibiting the proliferation 

and spread of cancer cells. 

10688654; 24359566; 29358655; 

24339862; 32517789; 30431129 

WISP2 Exhibits bidirectional effects on tumor cell regulation. 34385183; 30808397; 32711570 

PRIMA1 Binds to AChE, anchoring it to neural cell membranes. 11804574 

EPCAM 
Directly regulates the cell cycle and proliferation, and enhances the 

expression of proto-oncogene c-myc and cyclins A/E. 
15195135 

PDZD4 
A novel gene containing a PDZ domain contributes to tumor cell 

proliferation. 
15077175 

ATP1A2 
Catalytic subunit of an enzyme that hydrolyzes ATP, facilitating 

sodium and potassium ion exchange across the plasma membrane. 
33880529 

FAM83H Controls the migration of epithelial cells. 23902688 

ABCA9 
A transporter involved in monocyte differentiation and lipid 

transport regulation 
12150964 

C8orf46 Participates in neurogenesis. 32558188 

MAMDC2 Suppresses tumor cell activity. 32707597 

TCEAL2 Functions as a tumor suppressor. 33061644 

CEP55 Critical for mitotic exit and cytokinesis. 16198290; 17853893 

LIMS2 Regulates the migration and spreading of tumor cells. 16959213 

LMOD1 Enhances the migration of tumor cells. 35488236 

PLP1 Essential for the formation and maintenance of myelin structure. 30094605 

TMEM100 Inhibits metastasis of tumor cells. 34687431; 31188741 

ADHFE1 
Associated with tumor cell proliferation and embryonic 

development. 

16959974; 23517143; 

29202474; 24886599 

#PMID: PubMed unique identifier 
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Figure 6. Association between hub genes expression and tumor stage; **** was considered as P < 0.0001. 

Gastric cancer (GC), a leading cause of cancer-related 

deaths, remains challenging to treat, particularly in its 

advanced stages, with many therapeutic issues still 

unresolved [26]. Thus, the identification of new 
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biomarkers and hub genes for early-stage GC is critical. 

In our study, we identified 4892 differentially expressed 

genes (DEGs). The results of gene ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analyses indicated that these DEGs were 

predominantly involved in processes such as 

extracellular matrix (ECM) organization, DNA 

replication, the cell cycle, and the p53 signaling pathway. 

The cell cycle, frequently disrupted in cancer, represents 

a potential target for therapeutic intervention in GC [27, 

28]. A deeper understanding of how the cell cycle 

pathway contributes to GC’s initiation and progression 

may provide new insights into treatment strategies. DNA 

replication, crucial for cell division, when altered by 

replication errors or mutations, can lead to genomic 

instability, chromosomal abnormalities, and cancer 

progression [29]. The ECM plays a significant role in 

cancer metastasis and the development of tumors [30], 

and the p53 signaling pathway is essential for 

maintaining genomic integrity by regulating cell cycle 

progression in response to DNA damage [31]. 

Consequently, we hypothesize that these DEGs could be 

involved in GC progression and impact prognosis via the 

p53 pathway, contributing to the poor survival outcomes 

associated with GC. 

Through weighted gene co-expression network analysis 

(WGCNA), we identified six distinct gene co-expression 

modules, with the blue and turquoise modules showing a 

strong correlation with GC (tumor_normal). Following 

further analysis, we identified 19 hub genes through 

survival and differential expression analysis, which 

suggests these genes may play key roles in the diagnosis 

and treatment of GC. 

Early cancer detection has immense clinical value, and 

we aimed to address this challenge by evaluating the 

expression patterns of the 19 hub genes across different 

stages of GC and in normal tissue. Our findings 

demonstrated that ASF1B, EPCAM, FAM83H, and 

CEP55 exhibited elevated expression levels in early GC 

compared to normal gastric tissues, while the remaining 

14 hub genes had lower expression in early-stage GC. 

This pattern suggests that these genes may be valuable 

for early-stage GC diagnosis. 

Several of the identified hub genes have been linked to 

other cancers. For instance, ASF1B has been associated 

with increased metastasis and poor prognosis in breast 

cancer [32]. DPT, involved in cell adhesion and 

invasiveness, is crucial for the progression of oral 

squamous cell carcinoma [33]. Additionally, genes like 

ZBTB16, MAMDC2, TCEAL2, and TMEM100 have 

been shown to inhibit tumor proliferation and metastasis 

in various cancers, including gallbladder, breast, renal, 

and non-small cell lung cancers [34-37]. PDZD4 and 

ADHFE1 have been implicated in the proliferation of 

synovial sarcoma and colorectal cancer cells, 

respectively [38, 39]. LIMS2 and LMOD1 have been 

shown to promote GC cell migration [40, 41]. WISP2, 

exhibiting bidirectional effects, influences the 

proliferation of tumor cells in different cancers, including 

esophageal and ovarian cancer [42, 43]. The genes 

LIMS2, LMOD1, TCEAL2, TMEM100, and ZBTB16 

have also been highlighted for their involvement in GC 

development [40, 41, 44-46]. This supports the idea that 

these hub genes could serve as key biomarkers for early 

GC detection. 

The early identification, diagnosis, and treatment of GC 

are essential for improving survival rates and enhancing 

the quality of life for patients. Our study provides 

valuable insights into the potential use of these hub genes 

as biomarkers and therapeutic targets for early GC. Their 

identification holds significant promise for advancing 

clinical approaches in GC diagnosis, treatment, and 

prognosis. Nevertheless, this study has limitations, 

notably the absence of additional experimental validation 

to further explore the functional roles of these hub genes 

in GC. 

Conclusion 

Through WGCNA analysis, we identified six distinct co-

expression network modules and proceeded to isolate 

genes from the significant modules. Utilizing the GEPIA 

database, we validated 19 hub genes, which were further 

confirmed as key biomarkers for early GC. These 19 hub 

genes present a promising tool for early detection and 

treatment of GC, offering the potential to lower mortality 

rates among GC patients and providing a solid foundation 

for improving prediction, diagnosis, and therapeutic 

strategies for early-stage GC. 
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