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Abstract

Gastric cancer (GC) remains one of the most prevalent and fatal cancers worldwide, with high rates of both incidence and
mortality. Unfortunately, most patients are diagnosed at advanced stages, often through routine screenings, missing the best
time for intervention. In this research, weighted gene co-expression network analysis (WGCNA) was used to identify key gene
modules and hub genes associated with GC. Using the “limma” package in R, differentially expressed genes (DEGs) were
examined from TCGA’s GC dataset, resulting in the identification of 4892 DEGs. To better understand their biological roles,
Gene ontology (GO) enrichment and KEGG pathway analysis were performed, which revealed that the DEGs were strongly
involved in processes such as extracellular matrix organization, DNA replication, the cell cycle, and the p53 signaling pathway.
WGCNA was also applied to identify gene modules associated with clinical characteristics in both GC and normal tissue
samples. Six distinct gene modules were identified, with two showing significant association with GC. Hub genes in these
modules were determined through survival and expression analyses. In addition, one-way ANOVA was used to examine how
these hub genes were expressed across different stages of GC compared to normal tissues. This analysis revealed 19 genes with
significant differential expression and positive prognosis implications. These hub genes showed significant differences in
expression levels between normal and different GC stages, highlighting their potential as biomarkers for early detection of GC
and as valuable tools to aid in diagnosis at earlier stages.

Keywords: Early diagnosis, Gastric cancer, Differentially expressed genes, Bioinformatics, Weighted gene co-expression
network analysis

Introduction most prevalent cause of cancer diagnoses and the fourth

leading cause of cancer-related deaths globally [2]. This

Gastric cancer (GC), a type of cancer that originates from
the stomach’s epithelial cells or its surface glands,
continues to be one of the most common and lethal
cancers worldwide [1]. According to the 2020
GLOBOCAN report, GC is responsible for being the fifth
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disease arises from multiple factors, such as diet,
Helicobacter pylori infections, obesity, and genetics, all
of which contribute to its development [3, 4]. GC is
associated with high rates of metastasis, incidence, and
mortality. However, early detection is often missed,
leading to low rates of survival and the inability to
perform radical surgical treatments. Furthermore, GC
incidence and mortality are rising, particularly among
younger populations [5-7]. Since early-stage GC tends to
be asymptomatic, a majority of patients are diagnosed
only at later stages of the disease, which results in more
limited treatment options. Around 70% of cases are
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discovered after they have advanced beyond the point of
early intervention [6]. Therefore, early diagnosis and
treatment are crucial, which calls for the identification of
biomarkers that can improve early detection and patient
outcomes.

Weighted gene co-expression network analysis
(WGCNA) is a powerful method for analyzing gene
expression data across different samples. This technique
groups genes with similar expression profiles into
modules and links them with clinical traits, allowing the
identification of important genes within those modules
[8-10]. WGCNA has been successfully used in various
cancer studies to pinpoint key genes involved in the
progression and prognosis of cancers, including breast
cancer, colorectal cancer, and renal cell carcinoma,
aiding in the development of new diagnostic and
therapeutic strategies [11-13].

In this research, we combined WGCNA with other
analytical tools to examine clinical and RNA sequencing
data from gastric cancer patients available in the TCGA
database. We aimed to identify critical genes that are
linked to clinical factors such as disease status
(tumor_normal), gender, and pathologic features (T

stage, stage, vital status, and initial weight). The results
identified several potential hub genes that could serve as
biomarkers or therapeutic targets for early-stage GC,
providing a theoretical framework for improving
diagnostic and therapeutic practices for this challenging
disease.

Materials and Methods

Data acquisition and processing

RNA sequencing profiles and associated clinical data
were retrieved from the TCGA repository via the UCSC
Xena platform (https://tcga.xenahubs.net), which is
hosted by the University of California, Santa Cruz
(http://xena.ucsc.edu/) [14]. This dataset comprised 380
gastric cancer (GC) tissue samples alongside 37 normal
tissue samples. To evaluate the overall data distribution
and structure, we employed principal component analysis
(PCA) as an initial screening method [15-19]. Outliers
and inconsistent samples identified through PCA were
removed to enhance the robustness and accuracy of
subsequent analyses (Figure 1).
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Figure 1. Workflow of searching hub genes in GC.

Identification of clinically significant modules
The construction of a gene co-expression network from
the differentially expressed genes (DEGs) was carried

out using the “WGCNA” R package (version 1.70-3) [8,
10]. The process began with the application of the
flashClust tool in R, which was used to perform
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hierarchical clustering on the samples and to identify any
potential outliers. Next, the Pearson correlation
coefficient (PCC) was computed for each gene pair to
evaluate the level of co-expression. To ensure that the
resulting network adhered to a scale-free topology, an
optimal soft threshold power (B) was determined using
the pickSoftThreshold function. Once § was selected, a
weighted adjacency matrix (AM) was generated using a
power transformation, where the connection strength
(amn) between gene m and gene n was calculated by
raising the absolute PCC (Cmn) to the B power, as outlined
inEq1:

amn = |Cmn|[3 ()

In this context, amn represents the degree of adjacency
between two genes, cm, is the Pearson correlation
coefficient between them, and [ denotes the soft
thresholding power. The resulting AM was then
converted into a topological overlap matrix (TOM),
which was derived using the adjacency function as shown
in Eq 2. In this formulation, ln, is defined as the
cumulative sum of the products of adjacency values
between shared neighboring genes of m and n, while km
and kn represent the total connectivity of gene m and gene
n with all other nodes in the network. The TOM was
computed using the following equation:

lnn+amn (2)
min(kpy+ky)+1—amn

TOM,,, =

To group genes with comparable expression
characteristics into distinct modules, average linkage
hierarchical clustering was carried out using a
dissimilarity metric derived from the topological overlap
matrix, calculated as (1 — TOM). A minimum module
size was defined, allowing no fewer than 30 genes per
module, while a merging threshold of 0.25 was applied
to combine modules with highly similar expression
patterns. The module eigengene (ME), defined as the
leading principal component of each module, was used to
summarize the overall expression trend within that
module. To identify modules most strongly associated
with the clinical phenotype, Pearson’s correlation
coefficient was computed between the ME values and the
corresponding phenotype data, enabling the detection of
modules with the highest degree of relevance to the
clinical traits under investigation.

Hub gene selection

To pinpoint biologically meaningful hub genes, two core
metrics were applied: gene significance (GS), indicating
the strength of association between genes and clinical
traits, and module membership (MM), representing the
alignment between a gene and the rest of its module. Only
genes exceeding specific GS and MM thresholds were
considered for further investigation. To explore their
biological relevance, analyses were carried out using
GEPIA (http://gepia.cancer-pku.cn) [20], where both
survival impact and expression variation were assessed.
These evaluations focused on whether the selected genes
influenced survival outcomes in gastric cancer (GC)
patients and if their expression levels differed between
early-stage tumors and normal tissues. Significance
thresholds were set at P < 0.05 for survival analysis and
P < 0.01 for evaluating expression differences.

Evaluation of the diagnostic significance of hub genes
A total of 241 TCGA-derived samples were utilized to
examine the diagnostic potential of the hub genes. This
analysis involved comparing gene expression in normal
tissues with that across various GC pathological stages,
taking into account clinical phenotype data. One-way
ANOVA, performed using GraphPad Prism 8 software
[21], was used to determine whether expression patterns
of the hub genes varied significantly across disease
stages.

Results and Discussion

Pre-processing of data and DEG selection

Following the exclusion of 50 GC tumor samples and 26
normal samples that could not be properly classified, the
remaining samples were classified into GC tumor and
normal groups using principal component analysis
(PCA). The analysis showed that PC1 and PC2 explained
8.8% and 5% of the total variance, respectively (Figures
2a and 2b). A total of 4,892 genes were identified as
differentially expressed between the GC and normal
samples, with 3,043 genes being upregulated and 1,849
downregulated (Figures 2c and 2d).

Sample numbers
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Figure 2. DEGs identification and functional
enrichment analysis in GC; (a) number of samples
included in the study, (b) principal component
analysis (PCA) results, (c) volcano plot
representation: upregulated genes are marked with
red dots, downregulated genes with purple dots, and
genes with no significant change are in gray, (d)
total count of differentially expressed genes
(DEGS), (e) gene ontology (GO) enrichment
analysis, (f) KEGG pathway enrichment analysis;
the color of each dot represents the significance
level of the enrichment, while the size corresponds
to the number of genes involved in each enriched
term, with the top 20 results listed based on the P-
value

Gene ontology (GO) enrichment and KEGG pathway
analysis of DEGs

To explore the potential biological roles of the
differentially expressed genes (DEGS) in gastric cancer
(GC), we performed GO and KEGG pathway enrichment
analyses. The GO analysis identified several biological
processes consistently observed in prior research,
including extracellular matrix organization, DNA
replication, and the cell cycle, particularly DNA
replication and nuclear DNA replication (Figure 2e) [22,
23]. KEGG pathway analysis revealed several enriched
pathways such as focal adhesion, proteoglycans in
cancer, the impact of E. coli infection, apoptosis, cell
cycle regulation, small cell lung cancer, p53 signaling,
and ECM-receptor interactions (Figure 2f) [23, 24].

WGCNA and identification of key modules

For the construction of a co-expression network,
WGCNA was applied to the tumor and normal samples.
The clustering of these samples resulted in distinct
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branches, with no outliers identified (Figure 3a). Using
a scale-free topology criterion of 0.9, a soft threshold (B)
of 4 was selected (Figure 3b). Six different gene modules
were identified: blue, green, yellow, brown, turquoise,
and grey. The grey module, consisting of genes that did
not fit well into any of the other groups, was excluded
from further analysis (Figures 3c and 3d). Correlation
analysis between these modules and clinical phenotypes
revealed that the turquoise module (cor = 0.93, P = 8e-
107) had a strong positive correlation with GC, while the
blue module (cor =-0.62, P = 6e-27) exhibited a negative
correlation. These findings indicate that the turquoise
module plays a significant role in GC development, while
the blue module may offer protective effects against the
disease. As a result, the turquoise and blue modules were
selected for subsequent investigation.

Hub gene identification and validation

We examined the relationship between module
membership (MM) and gene significance (GS) for both
the blue and turquoise modules, revealing a strong
positive correlation (Figures 3e and 3f). To identify hub
genes, thresholds of [MM| > 0.8 and |GS| > 0.6 were set
for the blue module, and [IMM| > 0.8 and |GS| > 0.8 for
the turquoise module. This process identified 89 genes in
the blue module and 216 genes in the turquoise module.
Survival analysis and comparison of gene expression
levels in GC tissues versus normal tissues led to the
identification of 19 hub genes (ASF1B, DPT, ZBTB16,
WISP2, PRIMALl, EPCAM, PDZD4, ATP1A2,
FAMS83H, ABCA9, C8orf46, MAMDC2, TCEAL2,
CEP55, LIMS2, LMOD1, PLP1, TMEM100, ADHFEL).
These hub genes were found to be significantly
associated with GC prognosis, and expression
differences were observed between GC and normal
tissues (Figures 4 and 5).
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Figure 3. WGCNA analysis of DEGs in gastric



Arch Int J Cancer Allied Sci, 2024, 4(1):24-36 Xu et al.
cancer (GC); (a) hierarchical clustering of GC and measure (1-TOM), (d) a heatmap showing the
normal tissue samples based on clinical data, (b) relationship between module eigengenes (ME) and
analysis of the scale-free topology fit index and different clinical traits in GC, (e, f) scatter plots
average gene connectivity across various soft illustrating the association between module
threshold values (B), (c) dendrogram representing the membership (MM) and gene significance (GS) for
clustering of DEGs based on the dissimilarity genes in the turquoise (e) and blue (f) modules.
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Figure 4. Survival analysis of hub genes in gastric cancer (GC)

This analysis examines the survival outcomes associated  patient survival. The red line represents the high-
with 19 hub genes, showing a significant correlation with  expression group of each gene, while the blue line
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corresponds to the low-expression group. A P-value
threshold of < 0.05 was considered statistically

significant.
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Figure 5. Comparison of hub gene expression between GC and normal tissues

The expression profiles of hub genes were evaluated
using the GEPIA database, focusing on their levels in

both GC and normal tissues. A significance level of *P <

0.01 was applied to determine statistically relevant
differences.
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Early detection markers for gastric cancer (GC)

Upon assessing the expression levels of the 19 identified
hub genes at different stages of GC, we found that these
genes exhibited notable differences between normal
gastric tissues and those affected by early-stage GC.
Specifically, genes such as ASF1B, FAM83H, EPCAM,
and CEP55 had higher expression levels in early GC
tissues compared to normal gastric tissue, whereas the
expression of other genes was notably reduced in the
early stages of cancer. These observations suggest that
these hub genes may serve as crucial markers for the
early identification of GC (Figure 6) [25]. ASF1B and

CEP55, both previously implicated in cancer
development, mitosis, and cytokinesis, were barely
detectable in normal gastric tissues but showed elevated
levels in tumor tissues, even at early stages. Conversely,
genes such as PDZD4, ABCA9, ATP1A2, C8orf46, and
TCEAL2 demonstrated high expression in normal gastric
tissues but almost negligible expression in early GC
(Table 1; Figure 6). The combination of these 19 hub
genes—particularly ASF1B, CEP55, PDZD4, ATP1A2,
ABCA9, C8orf46, and TCEAL2—offers substantial
promise as biomarkers for the early detection of GC.

Table 1. Functional roles of the 19 hub genes

Gene Function Source PMIDs#
ASF1B Involved in the progression of various cancers. 35362843; 21179005
DPT A non-collagenous component of the extr_acellylar matrix that 30391671: 25149533 21796630
modulates tumor cell growth and invasiveness.
7BTB16 Functions as a transcriptional repressor, inhibiting the proliferation 10688654, 24359566, 29358655;
and spread of cancer cells. 24339862; 32517789; 30431129
WISP2 Exhibits bidirectional effects on tumor cell regulation. 34385183; 30808397; 32711570
PRIMA1 Binds to AChE, anchoring it to neural cell membranes. 11804574
EPCAM Directly regula_ltes the cell cycle and proliferation, anq enhances the 15195135
expression of proto-oncogene c-myc and cyclins A/E.
PDZD4 A novel gene containing a PD_Z dor_naln contributes to tumor cell 15077175
proliferation.
ATP1A2 Ca_talytlc subunit _of an enzyme that hydrolyzes ATP, facilitating 33880529
sodium and potassium ion exchange across the plasma membrane.
FAM83H Controls the migration of epithelial cells. 23902688
ABCA9 A transporter involved in monocyte (_1|fferent|at|on and lipid 12150964
transport regulation
C8orf46 Participates in neurogenesis. 32558188
MAMDC2 Suppresses tumor cell activity. 32707597
TCEAL2 Functions as a tumor suppressor. 33061644
CEP55 Critical for mitotic exit and cytokinesis. 16198290; 17853893
LIMS2 Regulates the migration and spreading of tumor cells. 16959213
LMOD1 Enhances the migration of tumor cells. 35488236
PLP1 Essential for the formation and maintenance of myelin structure. 30094605
TMEM100 Inhibits metastasis of tumor cells. 34687431; 31188741
i i i i i 16959974, 23517143,;
ADHEE1L Associated with tumor cell proliferation and embryonic

development.
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Figure 6. Association between hub genes expression and tumor stage; **** was considered as P < 0.0001.

Gastric cancer (GC), a leading cause of cancer-related advanced stages, with many therapeutic issues still
deaths, remains challenging to treat, particularly in its  unresolved [26]. Thus, the identification of new
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biomarkers and hub genes for early-stage GC is critical.
In our study, we identified 4892 differentially expressed
genes (DEGs). The results of gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses indicated that these DEGs were
predominantly involved in processes such as
extracellular matrix (ECM) organization, DNA
replication, the cell cycle, and the p53 signaling pathway.
The cell cycle, frequently disrupted in cancer, represents
a potential target for therapeutic intervention in GC [27,
28]. A deeper understanding of how the cell cycle
pathway contributes to GC’s initiation and progression
may provide new insights into treatment strategies. DNA
replication, crucial for cell division, when altered by
replication errors or mutations, can lead to genomic
instability, chromosomal abnormalities, and cancer
progression [29]. The ECM plays a significant role in
cancer metastasis and the development of tumors [30],
and the p53 signaling pathway is essential for
maintaining genomic integrity by regulating cell cycle
progression in response to DNA damage [31].
Consequently, we hypothesize that these DEGs could be
involved in GC progression and impact prognosis via the
p53 pathway, contributing to the poor survival outcomes
associated with GC.

Through weighted gene co-expression network analysis
(WGCNA), we identified six distinct gene co-expression
modules, with the blue and turquoise modules showing a
strong correlation with GC (tumor_normal). Following
further analysis, we identified 19 hub genes through
survival and differential expression analysis, which
suggests these genes may play key roles in the diagnosis
and treatment of GC.

Early cancer detection has immense clinical value, and
we aimed to address this challenge by evaluating the
expression patterns of the 19 hub genes across different
stages of GC and in normal tissue. Our findings
demonstrated that ASF1B, EPCAM, FAMS83H, and
CEP55 exhibited elevated expression levels in early GC
compared to normal gastric tissues, while the remaining
14 hub genes had lower expression in early-stage GC.
This pattern suggests that these genes may be valuable
for early-stage GC diagnosis.

Several of the identified hub genes have been linked to
other cancers. For instance, ASF1B has been associated
with increased metastasis and poor prognosis in breast
cancer [32]. DPT, involved in cell adhesion and
invasiveness, is crucial for the progression of oral
squamous cell carcinoma [33]. Additionally, genes like

ZBTB16, MAMDC2, TCEAL2, and TMEM100 have
been shown to inhibit tumor proliferation and metastasis
in various cancers, including gallbladder, breast, renal,
and non-small cell lung cancers [34-37]. PDZD4 and
ADHFE1 have been implicated in the proliferation of
synovial sarcoma and colorectal cancer cells,
respectively [38, 39]. LIMS2 and LMODL1 have been
shown to promote GC cell migration [40, 41]. WISP2,
exhibiting  bidirectional effects, influences the
proliferation of tumor cells in different cancers, including
esophageal and ovarian cancer [42, 43]. The genes
LIMS2, LMOD1, TCEAL2, TMEM100, and ZBTB16
have also been highlighted for their involvement in GC
development [40, 41, 44-46]. This supports the idea that
these hub genes could serve as key biomarkers for early
GC detection.

The early identification, diagnosis, and treatment of GC
are essential for improving survival rates and enhancing
the quality of life for patients. Our study provides
valuable insights into the potential use of these hub genes
as biomarkers and therapeutic targets for early GC. Their
identification holds significant promise for advancing
clinical approaches in GC diagnosis, treatment, and
prognosis. Nevertheless, this study has limitations,
notably the absence of additional experimental validation
to further explore the functional roles of these hub genes
in GC.

Conclusion

Through WGCNA analysis, we identified six distinct co-
expression network modules and proceeded to isolate
genes from the significant modules. Utilizing the GEPIA
database, we validated 19 hub genes, which were further
confirmed as key biomarkers for early GC. These 19 hub
genes present a promising tool for early detection and
treatment of GC, offering the potential to lower mortality
rates among GC patients and providing a solid foundation
for improving prediction, diagnosis, and therapeutic
strategies for early-stage GC.
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