

2023, Volume 3, Issue 1, Page No: 1-9 Copyright CC BY-NC-SA 4.0

Society of Medical Education & Research

Archive of International Journal of Cancer and Allied Science

Evaluation of Cytotoxic Effects Induced by Galantamine-Linked Peptide Esters on HeLa Cell Line via MTT Assay

Dobrina Tsvetkova^{1*}, Lyubomir Vezenkov², Tchavdar Ivanov², Dancho Danalev³, Ivanka Kostadinova⁴

- ¹ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria.
- ² Department of Organic chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
- ³ Department of Biotechnology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria.
- ⁴ Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria.

*E-mail M dtsvetkova@pharmfac.mu-spfia.bg

Abstract

In this study, the cytotoxic effect of newly developed peptide esters of galantamine—specifically GAL-VAL and GAL-LEU—was assessed against the HeLa cell line, a model for human cervical adenocarcinoma, using a concentration gradient ranging from 1.875 μ M to 30 μ M. Among the two, GAL-LEU showed a significantly enhanced ability to impair HeLa cell viability, achieving an 86.81% suppression at the highest concentration tested (30 μ M), with cell viability reduced to 13.19%. Comparative evaluation of their IC50 values revealed a greater potency for GAL-LEU, which required only 23.63 μ M to reduce viability by half, while GAL-VAL showed a less potent IC50 of 31.95 μ M. These results demonstrate the strong cytotoxic action of both peptide esters on the HeLa cell line, with GAL-LEU standing out as the more effective agent. The data point toward the promising therapeutic potential of GAL-VAL and GAL-LEU for further development in the treatment of cervical adenocarcinoma.

Keywords: HeLa cell line, Galantamine, Peptide esters, MTT

Introduction

Galantamine is recognized as a long-acting, centrally acting, and reversible inhibitor that competes with acetylcholine at the active site of the enzyme acetylcholinesterase [1, 2]; in addition to this cholinergic activity, it exhibits antioxidant behavior and functions as a positive allosteric modulator of α 7-subtype nicotinic acetylcholine receptors [3–6]. Prior research has shown that L-Leucyl-L-Leucine methyl ester can trigger programmed cell death in various cellular models [7],

Access this article online

Website: https://smerpub.com/ E-ISSN: 3108-4834

 $\textbf{Received:}\ 16\ \text{October}\ 2022; \textbf{Revised:}\ 23\ \text{December}\ 2022; \textbf{Accepted:}\ 11\ \text{January}\ 2023$

How to cite this article: Tsvetkova D, Vezenkov L, Ivanov T, Danalev D, Kostadinova I. Evaluation of Cytotoxic Effects Induced by Galantamine-Linked Peptide Esters on HeLa Cell Line via MTT Assay. Arch Int J Cancer Allied Sci. 2023;3(1):1-9. https://doi.org/10.51847/5DEuPIWIDX

while other compounds such as N-phosphoryl dipeptide methyl esters have been associated with the induction of apoptosis in HCT-15 cells [8]. Furthermore, a compound (di-isopropyloxyphoryl-Trp)2-Lys-OCH3 demonstrated inhibitory effects on the proliferation of HeLa cells [9]. Building upon these findings, the present study focused on assessing the cytotoxic behavior of newly synthesized Galantamine-based peptide esters namely, 6-O-N-[N-(3,4-chlorophenyl)-D, L-Alanyl]-L-Valil-Glycil-Galantamine (GAL-VAL) and 6-O-N-[N-(3,4-chlorophenyl)-D, L-Alanyl]-L-Leucyl-Glycil-Galantamine (GAL-LEU)—against the HeLa cell line, which models human cervical adenocarcinoma [10]. Previous evaluations using the ferric reducing/antioxidant power (FRAP) method revealed that these compounds exhibit dual inhibitory activity against acetylcholinesterase and γ-secretase enzymes [11, 12].

In this investigation, the cytotoxic impact of newly developed peptide esters of galantamine—specifically GAL-VAL and GAL-LEU-was assessed against the HeLa cell line, a model for human cervical adenocarcinoma, using a concentration gradient ranging from $1.875 \mu M$ to $30 \mu M$.

Materials and Methods

Materials

1. In Vitro Cancer Cell Model – HeLa Cell Line

To evaluate the cytotoxic potential of the peptide esters, experiments were conducted using the HeLa cell line derived from cervical adenocarcinoma, maintained in Minimum Essential Medium Eagle as the culture medium.

2. Tested Peptide Esters: GAL-LEU and GAL-VAL

The peptide esters GAL-LEU and GAL-VAL utilized in this study were synthesized by Vezenkov et al. [10] and are depicted in Figure 1.

(4aS,6R,8aS)-3-methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3cd]azepin-6-yl (3,4-dichlorophenyl)-L-alanyl-L-leucylglycinate

(4aS,6R,8aS)-3-methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3cd]azepin-6-yl (3,4-dichlorophenyl)-D-alanyl-L-leucylglycinate

(4aS,6R,8aS)-3-methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3cd]azepin-6-yl (3,4-dichlorophenyl)-L-alanyl-L-valylglycinate

(4aS,6R,8aS)-3-methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3cd]azepin-6-yl (3,4-dichlorophenyl)-D-alanyl-L-valylglycinate

Figure 1. Chemical structures of GAL-LEU and GAL-VAL

3. Analytical-Grade reagents

The study employed high-purity reagents including fetal bovine serum (FBS), penicillin at a concentration of 100 IU/ml, streptomycin at 100 µg/ml, and standard MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide). Additional materials included dimethylsulfoxide, as well as 0.25 percent Trypsin EDTA 1X for enzymatic cell detachment.

4. Stock solution preparation of peptide esters

The peptide esters of Galantamine, GAL-VAL, and GAL-LEU, were individually solubilized in dimethylsulfoxide to generate stock solutions, each at a final concentration of twenty mM.

5. MTT solution formulation

To prepare the MTT solution, the compound was dissolved in phosphate-buffered saline (PBS) to yield a 5 mg/ml solution. When stored at 4 °C, this preparation remains stable for up to one month.

Methods

1. Cell culture and seeding procedure

To evaluate cytotoxic responses, assays were conducted using 96-well microplates. HeLa cervical cancer cells were grown in minimum essential medium eagle enriched with 5% fetal bovine serum, 100 IU/ml of penicillin, and 100 µg/ml of streptomycin. Cultures were maintained in 75 cm² flasks under standard conditions: 37 °C, 5% CO₂, and high humidity. Actively dividing cells were enzymatically detached using trypsin, collected via centrifugation, and counted using a hemocytometer. The cell density was adjusted with fresh culture medium to reach 6×10⁴ cells per ml. Subsequently, 100 µl of this suspension was dispensed into each well and incubated for 24 hours at 37 °C in a humidified CO2 atmosphere. After incubation, the medium was aspirated from the wells to prepare for treatment.

2. MTT assay protocol

The cytotoxic effects of the peptide esters were determined following the MTT assay developed by Mosmann [13]. Solutions of GAL-VAL and GAL-LEU were prepared in varying concentrations from 1.875 μ M

to 30 μ M, and 200 μ l of each concentration was added to individual wells. Each condition was tested in triplicate, and the mean values were recorded. After a 48-hour exposure period, 200 μ l of MTT solution (0.5 mg/ml) was added to each well, and plates were incubated for an additional 4 hours at 37 °C in a CO₂-enriched environment. Post-incubation, the supernatant was removed, and 100 μ l of dimethylsulfoxide was added to dissolve the resulting formazan crystals. Absorbance was then measured at 570 nm. The IC₅₀ value, indicating the concentration at which cell proliferation was inhibited by 50%, was calculated. Additionally, cell viability index (V%) and inhibition of cell growth (I%) were determined using standard formulae.

$$V(\%) = \left[\frac{A(t) - A(-)}{A(+) - A(-)} \right] \times 100 \tag{1}$$

I(%) = 100 - V(%)

$$= 100 - \left\{ \left[\frac{A(t) - A(-)}{A(+) - A(-)} \right] \times 100 \right\}$$
 (2)

V (%): cell viability index

Represents the percentage of viable HeLa cells after treatment with the tested compound.

I (%): percentage of cell growth inhibition

Reflects the degree to which cell proliferation is suppressed by the peptide esters.

At: This is the average absorbance measured from formazan crystals in wells containing HeLa cells treated with the test compound.

A(+): Denotes the average formazan absorbance from the positive control group, which includes HeLa cells treated with MTT but without exposure to the peptide esters.

A(-): Refers to the mean absorbance recorded from the negative control setup, where only MTT was added, excluding both cells and test compounds.

Results and Discussion

To calculate the IC_{50} values for GAL-LEU and GAL-VAL against the HeLa cell line, the absorbance data for the formazan formed was plotted against the corresponding concentrations of the peptide esters. Doxorubicin was employed as the reference standard. The absorbance readings from the positive control (A(+)) and negative control (A(-)), as well as the formazan absorbance levels resulting from the treatment of HeLa cells with the test compounds, are summarized in **Table 1**.

\mathbf{N}	A (+) A (-)				
1	1.649 0.085				
2	1.571 0.084			4	
3		1.672 0.081			1
4		1.630		0.084	4
5	1.792				
6	1.827				
$\overline{\mathrm{X}}$	1.690 0.084				
SD	0.099 0.002				
Carrier [uM]	Formazan absorbance [AU]				
Cgal- leu [µM] —	1.	2.	3.	$\overline{\mathbf{X}}$	SD
1.875	1.421	1.553	1.570	1.515	0.081
3.75	1.398	1.455	1.488	1.447	0.046
7.5	1.453	1.503	1.498	1.485	0.028
15	1.332	1.212	1.352	1.299	0.076
30	0.200	0.466	0.220	0.295	0.148
C IuMl	Formazan absorbance [AU]				
Cgal-val [μM]	1	2	3	$\overline{\mathbf{X}}$	SD
1.875	1.573	1.684	1.688	1.648	0.065
3.75	1.597	1.684	1.611	1.631	0.047
7.5	1.483	1.536	1.602	1.540	0.060
15	1.438	1.516	1.512	1.489	0.044
30	1.125	1.241	1.23	1.199	0.064

Table 1. Absorbances controls and formazan produced from the GAL-LEU- and GAL-VAL-treated HeLa cell line

Figure 2 demonstrates the relationship between the peptide ester concentrations and the absorbance levels of formazan.

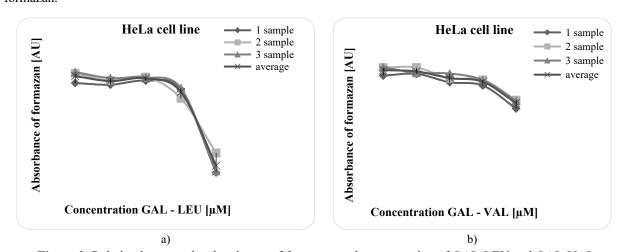


Figure 2. Relation between the absorbance of formazan and concentration of GAL-LEU and GAL-VAL

The impact of varying concentrations (1.875 $\mu M-30$ μM) of GAL-LEU and GAL-VAL on HeLa cell viability is presented in **Table 2**.

1401				37 IE EEU und G7 IE	,,,,,,	
C [mM]	Index of HeLa cell viability [%]					
C _{GAL-LEU} [µM] -	1	2	3	$\overline{\mathbf{X}}$	SD	
1.875	83.25	91.46	92.52	89.08	5.07	
3.75	81.82	85.36	87.42	84.87	2.83	
7.5	85.24	88.35	88.04	87.21	1.71	
15	77.71	70.24	78.95	75.63	4.71	
30	7.25	23.81	8.5	13.19	9.22	
C (M	Index of HeLa cell viability [%]					
CGAL-VAL [µM] —	1	2	3	$\overline{\mathbf{X}}$	SD	
1.875	92.71	99.62	99.87	97.4	4.06	
3.75	94.2	99.62	95.07	96.3	2.91	
7.5	87.11	90.4	94.51	90.67	3.71	
15	84.3	89.16	88.91	87.46	2.74	
30	64.82	72.04	71.36	69.41	3.99	

Table 2. Index of HeLa cell viability after treatment with GAL-LEU and GAL-VAL

Figure 3 shows the correlation between the peptide ester concentrations and the HeLa cell viability index.

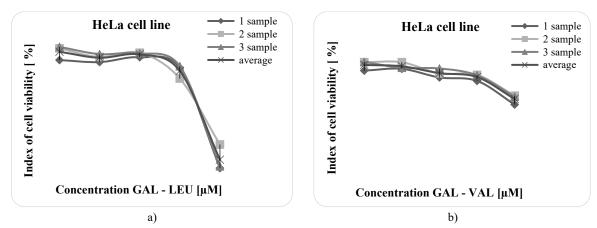


Figure 3. HeLa cells survival after treatment with GAL-LEU and GAL-VAL

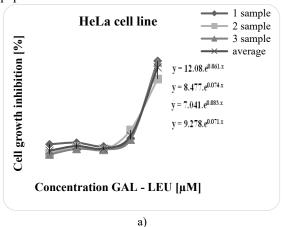

Table 3 summarizes the experimental findings from the evaluation of the cytotoxic effects of peptide esters on HeLa cells.

Table 3. Effect of GAL-LEU and GAL-VAL on HeLa cell line prolif	teration
--	----------

C _{GAL-LEU} [µM]		Inhibition of Hela ce	ll growth [%] treate	d with GAL-LEU	
	1	2	3	$\overline{\mathbf{X}}$	SD
1.875	16.75	8.54	7.48	10.92	5.07
3.75	18.18	14.64	12.58	15.13	2.83
7.5	14.76	11.65	11.96	12.79	1.71
15	22.29	29.76	21.05	24.37	4.71
30	92.75	76.19	91.50	86.81	9.22
IC ₅₀	23.29	23.98	23.62	23.63	0.35
Cgal-val [µM] -		Inhibition of Hela ce	ll growth [%] treate	d with GAL-VAL	
	1	2	3	$\overline{\mathbf{X}}$	SD

1.875	7.29	0.38	0.13	2.60	4.06
3.75	5.80	0.38	4.93	3.70	2.91
7.5	12.89	9.60	5.49	9.33	3.71
15	15.70	10.84	11.09	12.54	2.74
30	35.18	27.96	28.64	30.59	3.99
IC ₅₀	35.20	30.19	30.46	31.95	2.82

Figure 4 displays the inhibition of HeLa cell growth by the peptide esters.

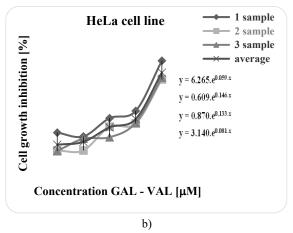


Figure 4. Cytotoxic effect of GAL-LEU and GAL-VAL against Hela cell lines

The results for the 50% inhibitory concentration (IC_{50}) were as follows: GAL-LEU at 23.63 µM, GAL-VAL at $31.95 \mu M$, and the standard Doxorubicin at $3.1 \mu M$. The MTT assay developed by Mosmann has become a widely accepted method for assessing the cytotoxic effects of various compounds due to its numerous advantages, including speed, adaptability, quantitative nature, reproducibility, and sensitivity. This assay measures the ability of viable cells to convert the yellow tetrazolium [3-(4.5-dimethylthiazol-2-yl)-2.5salt diphenyltetrazolium bromide] into insoluble violet formazan crystals, which can be dissolved in an organic solvent and detected spectrophotometrically at a wavelength of $\lambda = 570$ nm. The reduction of MTT is driven by the electron transfer from oxidized substrates or enzymes, primarily facilitated by succinate dehydrogenase at the ubiquinone, cytochrome B, and cytochrome C sites of the mitochondrial electron transport chain. This conversion is directly linked to cell viability, as mitochondrial reductase enzymes are required for the reduction to occur. As the number of live cells increases, the amount and absorbance of formazan also increase. A dose-response curve can be constructed by comparing the formazan produced by treated cells with the amount produced by untreated control cells, thereby assessing the cytotoxic potential of the compound [13].

The MTT assay has been utilized to evaluate the cytotoxic effects of various extracts, including *Acalypha wilkesiana* against MCF-7 breast cancer cells [14] and HeLa human cervical cancer cells [15], as well as *Rheum ribes* L. against KB and A-549 cell lines [16]. Cancer, characterized by malignant tumors that invade surrounding tissues, is often a result of mutations in stem cells [17, 18]. In Saudi Arabia, cervical cancer, along with sickle-cell anemia and thalassemia, is prevalent [19].

The HeLa cell line, originating from a cervical cancer biopsy in 1951, was the first human cancer cell line to be continuously cultured. It has since served as a model for studying various cellular processes [20]. In cell culture, cells from different lines are grown in specific media [21]. For the present study, HeLa cells were cultured in Minimum Essential Medium Eagle, with Doxorubicin used as the standard control, known for inhibiting phosphatidylserine decarboxylase and altering mitochondrial membranes in HeLa cells [22, 23].

HeLa cells were treated with each of the peptide esters at varying concentrations (1.875 μ M – 30 μ M), and the cytotoxicity was assessed using the MTT assay. The experimental data revealed a decrease in formazan production, indicating the growth-inhibitory properties of the peptide esters. Notably, GAL-LEU at 30 µM exhibited 86.81% cytotoxicity, with a cell viability index of 13.19%. In contrast, GAL-VAL at the same concentration showed a lower antiproliferative effect, reducing cell survival to 69.41% and inhibiting 30.59% of cell proliferation. Cytotoxicity was determined by the IC₅₀ value, which represents the concentration needed to inhibit cell growth by 50%. It was reported that 0.1 µM of Doxorubicin reduced HeLa cell survival to 40% [24]. The inhibition of cell growth was analyzed using nonlinear regression in Microsoft Excel, with IC₅₀ values calculated from the respective equations: GAL-LEU $(IC_{50} = 23.63 \mu M \pm 0.35 \mu M)$ (y = 9.278.e0.071.x) and GAL-VAL (IC₅₀ = 31.95 μ M \pm 2.82 μ M) (y = 3.140.e0.081.x). These IC₅₀ values were found to be higher compared to the reference Doxorubicin (IC₅₀ = 3.1μM), indicating that the peptide esters exhibit lower antiproliferative activity than Doxorubicin.

Several studies have shown that Ledakrin inhibits DNA replication and synthesis in a dose-dependent manner in HeLa S3 cells by preventing thymidine incorporation [25]. Moreover, inhibition of phosphatidylinositol 3-kinases has been linked to the induction of mitotic cell death in HeLa cells [26]. Anticancer effects have also been noted for coumarin derivative Calanone, isolated from the *Calophyllum* genus, which exhibited an IC₅₀ of 22.887 μg/ml in HeLa cells [27], as well as an ethanolic extract of *Canthium parviflorum* Lam., which showed an IC₅₀ of 43.15 μg/ml [28].

Additionally, the triterpenoid methyl boswellates demonstrated significant cytotoxicity, with an IC₅₀ value of 0.27 µM and a 78.5% reduction in HeLa cell viability at 1 µM [29]. DNA methyltransferase inhibitors such as Zebularine [30], and synthetic antioxidants like butylated hydroxyanisole [31] and propylgallate [32], have been shown to suppress HeLa cell proliferation through caspase-dependent apoptosis, with IC50 values of 130 μM, 150 μM, and 800 μM, respectively. Lower IC₅₀ values indicate stronger cytotoxic effects, with the triterpenoid demonstrating the highest potency, followed by Zebularine, butylated hydroxyanisole, and propylgallate.

(DIPP-Trp)2-Lys-OCH3 also displayed dose-dependent inhibition of HeLa cell growth, with an IC $_{50}$ of 42.23 μM

at a concentration of 100 μ M, which inhibited 85% of the HeLa cells [9].

When comparing our experimental findings, it is clear that GAL-LEU demonstrates similar activity to Calanone, while GAL-LEU (IC₅₀ = 23.63 μ M) and GAL-VAL (IC₅₀ = 31.95 μ M) are more effective in inhibiting HeLa cell proliferation than Zebularine, butylated hydroxyanisole, and propylgallate.

Conclusion

The observed decrease in formazan production and absorbance following treatment with the peptide esters indicates their potential to inhibit cell growth. The calculated IC₅₀ values for GAL-LEU and GAL-VAL were 23.63 μ M and 31.95 μ M, respectively, showing that both esters have cytotoxic effects on HeLa cells. GAL-LEU demonstrated a more potent antiproliferative effect compared to GAL-VAL, as evidenced by its lower IC₅₀.

Acknowledgments: The authors extend their sincere gratitude to Professor Iqbal Choudhary, Sadia Siddiq, and Rizwana Malik from the Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Pakistan, for their expert technical support, valuable experimental guidance, and ongoing scientific collaboration. The authors also thank Prof. Danka Obreshkova for her scientific consultation and cooperative efforts.

Conflict of Interest: None

Financial Support: None

Ethics Statement: None

References

- Danchev N, Nikolova I. Pharmacological treatment of cognitive impairments in Alzheimer's disease. Autonomic Autocoid Pharmacol. 2006;26(1):46-9.
- Ago Y, Koda K, Takuma K, Matsuda T. Pharmacological aspects of the acetylcholinesterase inhibitor Galantamine. J Pharmacol Sci. 2011;116(1):6-17. doi:10.1254/jphs.11r01cr
- 3. Arias E, Alés E, Gabilán NH, Cano-Abad MF, Villarroya M, García AG, et al. Galantamine prevents apoptosis induced by β-amyloid and thapsigargin: Involvement of nicotinic acetylcholine

- receptors. Neuropharmacol. 2004;46(1):103-14. doi:10.1016/s0028-3908(03)00317-4
- Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, et al. The allosteric potentiation of nicotinic acetylcholine receptors by Galantamine ameliorates the cognitive dysfunction in beta-amyloid 25-35 i.c.v.-injected mice: Involvement of dopaminergic systems. Neuropsychopharmacol. 2007;32(6):1261-71. doi:10.1038/sj.npp.1301256
- Traykova M, Traykov T, Hadjimitova V, Krikorian K, Bojadgieva N. Antioxidant properties of Galantamine hydrobromide. Z Naturforsch C. 2003;58(5-6):361-5. doi:10.1515/znc-2003-5-613
- Tsvetkova D, Obreshkova D, Zheleva-Dimitrova D, Saso L. Antioxidant activity of Galanthamine and some of its derivatives. Curr Med Chem. 2013;20(36):4595-608. doi:10.2174/09298673113209990148
- Thiele DL, Lipsky PE. Modulation of human natural killer cell function by L-Leucine methyl ester: Monocyte dependent depletion from human peripheral blood mononuclear cells. J Immunol. 1985;134(2):786-93.
- Niu YL, Du W, Jiang YY, Cao SL, Zhao YF. Apoptosis of HCT-15 cell lines induced by a kind of N-phosphoryl branched dipeptide. J Tsinghua Univ. 2001;7:101-3.
- Liu F, Liu SY, Xu P, Xie ZH, Cai GP, Jiang YY. Apoptosis induced by (di-isopropyloxyphoryl-Trp)2-Lys-OCH3 in K562 and HeLa cells. J Biosci. 2008;33(1):55-62. doi:10.1007/s12038-008-0001-3
- Vezenkov LT, Georgieva MG, Danalev DL, Ivanov TB, Ivanova GI. Synthesis and characterization of new Galanthamine derivatives comprising peptide moiety. Protein Pept Lett. 2009;16(9):1024-8. doi:10.2174/092986609789055412
- 11. Vezenkov L, Sevalle J, Danalev D, Ivanov T, Bakalova A, Georgieva M, et al. Galantamine-based hybrid molecules with acetylcholinesterase, butyrylcholinesterase, and γ-secretase inhibition activities. Curr Alzheimer Res. 2012;9(5):600-5. doi:10.2174/156720512800618044
- 12. Tsvetkova D, Zheleva-Dimitrova D, Obreshkova D. Estimation of antioxidant activity of new peptide esters of Galanthamine by applying of Ferric reducing antioxidant power (FRAP) method. Compt Rend Acad Bulg Sci. 2013;66(3):445-50.
- 13. Mosmann T. Rapid colorimetric assay for cellular growth and survival. Application to proliferation and

- cytotoxicity assays. J Immunol Methods. 1983;65:55-63.
- 14. Halimah E, Hendriani R, Indradi B, Sofian FF. Cytotoxicity of ethanol extract and its fractions from Acalypha wilkesiana against breast cancer cell MCF-7. J Adv Pharm Educ Res. 2022;12(1):17-20. doi:10.51847/G2bMkvc6PO
- 15. Halimah E, Hendriani R, Ferdiansyah F. Antiproliferative activity of *Acalypha wilkesiana* against human cervical cancer cell lines HeLa. J Adv Pharm Educ Res. 2021;11(4):7-10. doi:10.51847/jsMgvvrBMs
- Azadpour M, Farajollahi MM, Varzi AM, Hadipour F, Barati M. The evaluation of cytotoxicity effects of Rheum ribes L. (rhubarb) extract on cancer cell lines and its antibacterial and mutagenicity activity. Entomol Appl Sci Lett. 2020;7(3):7-12.
- Saeed S, Abbasi A, Hashim ASM. A systematic mapping study of detection of tumor cell targeted by enzymes though cerebrospinal fluid. Clin Cancer Investig J. 2023;12(1):1-6. doi:10.51847/VqorizLQM3
- Al Mojel SA, Ibrahim SF, Alshammari LK, Zadah MH, Ghamdi RNA, Thaqfan DAA. Saudi population awareness and attitude regarding stem cell donation.
 Arch Pharm Pract. 2021;12(1):85-9. doi:10.51847/X6pE71yCtN
- Nancy A, Sukinah A, Maram A, Sara A, Hiba A, Manar A. Dental and skeletal manifestation of sickle-cell anaemia and thalassemia in Saudi Arabia; A systematic review. Int J Pharm Res Allied Sci. 2021;10(3):1-7. doi:10.51847/MqER5p763n
- 20. Masters JR. HeLa cells 50 years on the good, the bad, and the ugly. Nature Rev Cancer. 2002:2(4):315-9. doi:10.1038/nrc775
- 21. Dsouza TS. Cell culture and microscopy as research aids in conservative dentistry and endodontics. Ann Dent Spec. 2021;9(4):12-5. doi:10.51847/jFEn5AEnsF
- 22. Waggiallah HI. Phosphatidylserine as red cell eryptosis marker consolidating phagocytotic clearance. J Biochem Tech. 2020;11(2):77-81.
- 23. Bellance N, Furt F, Melser S, Lalou C, Thoraval D, Maneta-Peyret L, et al. Doxorubicin inhibits phosphatidylserine decarboxylase and modifies mitochondrial membrane composition in HeLa cells. Int J Mol Sci. 2020;21(4):1317. doi:10.3390/ijms21041317

- Sadeghi-Aliabadi H, Minaiyan M, Dabestan A. Cytotoxic evaluation of doxorubicin in combination with simvastatin against human cancer cells. Res Pharm Sci. 2010;5(2):127-33.
- Woynarowski JM, Bartoszek A. The mechanism of inhibition of DNA replication in HeLa S3 cells by the antitumor drug Ledakrin and other antitumor 1-nitro-9-aminoacridines. Biochim Biophys Acta. 1985;825(2):244-53. doi:10.1016/0167-4781(85)90109-5
- 26. Hou H, Zhang Y, Huang Y, Yi Q, Lv L, Zhang T, et al. Inhibitors of phosphatidylinositol 3-kinases promote mitotic cell death in HeLa cells. PLoS ONE. 2012;7(4):e35665. doi:10.1371/journal.pone.0035665
- 27. Ekowati H, Astuti I, Mustofa M. Anticancer activity of calanone on Hela cell line. Indo J Chem. 2010;10(2):247-51. doi:10.22146/ijc.21467
- 28. Purushoth PT, Panneerselvam P, Selvakumari S, Dhanasekaran S. In vitro and in vivo anticancer activity of ethanolic extract of *Canthium parviflorum* Lam on DLA and Hela cell lines. J Drug Dev Res. 2011;3(4):280-5.
- Ravanan P, Singh SK, Rao GS, Kondaiah P. Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J Biosci. 2011;36(2):297-307. doi:10.1007/s12038-011-9056-7
- 30. You BR, Park WH. Zebularine inhibits the growth of HeLa cervical cancer cells via cell cycle arrest and caspase-dependent apoptosis. Mol Biol Rep. 2012;39(10):9723-31. doi:10.1007/s11033-012-1837-z
- Moon HJ, Park WH. Butylated hydroxyanisole inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis and GSH depletion. Mol Cell Biochem. 2011;349(1-2):179-86. doi:10.1007/s11010-010-0672-6
- 32. Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH. Propylgallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycle. Oncol Rep. 2010;23(4):1153-8. doi:10.3892/or_00000745