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Abstract

The detrimental effect of vibration, which is considered one of the main physical factors in production, requires comprehensive
scientific exploration. This study investigates how whole-body vibration influences protein metabolism using laboratory
animals as a model. Two series of experiments were conducted involving a total of 30 white rats housed under uniform
environmental conditions. Animals in group 1 were subjected to vibration exposure, whereas group 2 served as the control and
did not experience any such exposure. The vibration parameters applied to group 1 included general vertical sinusoidal vibration
at a frequency of 20 Hz and an intensity of 126 dB, administered for 4 hours per day for 8 weeks. The experimental data showed
that while the total protein concentrations remained largely unaltered, a significant decrease in albumin levels was observed in
the protein fraction profile. In addition, there was a significant elevation in both a-globulin and y-globulin fractions. By the
conclusion of the study, a statistically significant decline in serum concentrations of several total amino acids was detected in
the vibration-exposed group, including aspartic acid (P < 0.05), proline (P < 0.05), glycine (P < 0.01), valine (P < 0.05),
methionine (P < 0.05), and phenylalanine (P < 0.001). A general downward trend was also observed in the levels of hydrophobic
(nonpolar) amino acids—specifically valine, proline, phenylalanine, and methionine—as well as in slightly polar uncharged
and negatively charged amino acids such as aspartic acid.
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other substances such as fats (14.7%), inorganic salts
(4.9%), nucleic acids (1.0%), and carbohydrates (1.0%)
[1-3]. Given their broad functional range—spanning

Introduction

Among all organic compounds constituting living

organisms, proteins hold a central role due to their
intricate  molecular structure and critical biological
functions. They represent the primary component of body
mass—comprising approximately 20%—in contrast to
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catalytic, structural, energetic, transport, hereditary,
immune, and regulatory roles—understanding how
protein metabolism responds to environmental influences
is of substantial scientific interest [4, 5].

With the continuous advancement of industrialization
and urban growth, a rising number of workers are
routinely subjected to negative physical factors of the
production environment. This trend inevitably leads to
increasing exposure to harmful physical conditions at the
workplace, contributing to cumulative physiological
strain. As such, the scale of potential health consequences
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linked to these exposures is significant, underlining the
pressing societal importance of this issue [6-8].
Vibrational impacts stand out among the most critical
physical production stressors, which informed the
decision to focus this research specifically on vibration
as the primary variable [9, 10]. While a wide body of
research has addressed the broader health implications of
workplace vibration exposure [11-18], including
disruptions to multiple physiological systems observed
both in at-risk professionals and in experimental animal
models [19-22], detailed insight into its effects on
protein metabolism remains sparse [23].

This study aims to fill that gap by examining how general
vibration—one of the key physical factors of
production—affects  protein  metabolism,  using
laboratory animals as a model to explore these changes
in a controlled setting.

Materials and Methods

To evaluate the adverse impact of vibration as a physical
production factor, two experimental series were carried
out using thirty white laboratory rats. The study utilized
sexually mature Wistar rats, each weighing between 220—
250 grams. All subjects were maintained under identical
conditions regarding housing, diet, environmental
hygiene, and sleep-wake cycles. The animals were
divided into two distinct cohorts:

e Group 1: rats subjected to vibration exposure;

e Group 2: control rats that weren’t exposed to

vibration.

The rats in group 1 experienced general vertical
sinusoidal vibration at a frequency of 20 Hz and a
vibration velocity of 126 dB, applied using a VSV-240-
445 vibration stand (produced by Rostech, Russia). The
cumulative vibration exposure was evaluated using total
vibration dose metrics, aligning in physical interpretation
with exposure criteria outlined in international 1SO
standards for noise and vibration [24].

Key markers of protein metabolism assessed in this study
included total plasma protein levels, its fractionation, and
serum amino acid profiles—the latter being the

foundational constituents of protein structures [25]. Total
protein concentrations were measured using an IRF-464
refractometer (Agroservice, Russia), while
electrophoresis on paper was employed for analyzing
protein fractions [26]. Quantification of amino acids in
serum was performed with an automatic AAA-500 amino
acid analyzer (INGOS, Czech Republic).

All experimental data were analyzed using conventional
statistical methods, including the calculation of the
arithmetic mean (M) and standard error (m). The
significance of differences between data sets was
determined through coefficient calculation and Student’s
t-test to establish the level of statistical confidence.

Results and Discussion

Effectively addressing the mechanisms through which
general vibration impacts the body requires an in-depth
examination of alterations in metabolic pathways,
particularly those involving protein and amino acid
metabolism [27]. Proteins, serving as the structural
foundation of cells, represent the most quantitatively
dominant organic compounds across living organisms,
especially in more complex species [28, 29]. In light of
this, a targeted investigation was conducted to determine
how protein metabolism responds under conditions of
experimental vibration exposure.

Findings from this study revealed that subjecting animals
to vibration with a frequency of 35 Hz and a vibration
velocity of 126 dB for 4 hours daily over 8 weeks—
resulting in a cumulative exposure of 150 dB—did not
lead to statistically significant alterations in total protein
levels (Table 1). The mean total protein value recorded
in the vibration-exposed group was 6.18 *+ 0.11%,
compared to 6.35 + 0.1% in the control group.
Nevertheless, a marked decline in the proportion of
albumin within the protein fractions was observed,
decreasing from 55.18% to 49.20%. Concurrently, there
was a noticeable elevation in both a-globulin and y-
globulin fractions (Table 1), indicating that although
total protein remained relatively stable, the distribution
among protein subtypes was notably affected.

Table 1. Indicators of protein metabolism under the influence of vibration with parameters f = 35 Hz, Lv = 126 dB,
time t = 4 hours, cumulative dose of vibration 150 dB

Groups, statistical Total

Protein fractions

indicators protein (%) Albumins (%)

Globulins (%)
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a p Y
M+m
Control 6.35+0.13 55.18+2.4 1256 £ 0.21 20.71+x0.4 13.13+0.70
Experience 6.18 +0.11 49.20£1.10 14.20 £ 0.63 19.1+1.20 16.9+0.44
P >0.05 <0.05 <0.05 >0.05 >0.05

The observed reduction in aloumin levels may be closely
linked to alterations in amino acid metabolism,
particularly tryptophan, which is essential for the
production of nicotinic acid (PP), serum proteins, and
hemoglobin synthesis [30, 31]. Additionally, tryptophan
acts as a growth factor, and its demand is higher in
younger organisms, which may explain the impaired
weight gain in developing rats subjected to prolonged
vibration exposure [20, 32, 33].

Amino acids are integral to the formation of proteins and
other biologically active compounds in the body [34], but
they also serve as a source of energy [35]. The body of
higher animals metabolizes both exogenous amino acids,
obtained from food proteins, and endogenous amino
acids, which are produced through the body’s metabolic
renewal processes [36]. The findings from the study
indicated a significant reduction in the overall
concentration of amino acids in the blood serum of the
rats by the end of the exposure period (Figure 1).
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Figure 1. Dynamics of changes in amino acid content under the influence of vibration with a cumulative dose of
150 dB (confidence (P): * 0.05; ** 0.01; *** 0.001)

Amid the overall reduction in amino acids, a significant
decline was noted in the levels of aspartic acid (P < 0.05),
proline (P < 0.05), glycine (P < 0.01), valine (P < 0.05),
methionine (P < 0.05), and phenylalanine (P < 0.001).
Specifically, there was a decrease in the hydrophobic
(nonpolar) amino acids, such as valine, proline,
phenylalanine, and methionine, as well as slightly polar
uncharged amino acids and negatively charged ones like
aspartic acid. The reduction in methionine is particularly
significant, given its role in fat metabolism by
influencing fat-phospholipid processes and being a key
lipotropic agent that helps prevent the development of

fatty liver [37, 38]. Furthermore, methionine plays an
essential role in donating methyl groups for choline
synthesis, which acts as an anti-atherosclerotic agent
[39]. Additionally, vibration exposure resulted in
decreased lysine levels, which is vital for hematopoiesis.
A deficiency in lysine is associated with a reduction in
red blood cell production and hemoglobin levels [40], as
well as disruptions in bone calcification and muscle
wasting [41].

These disturbances in protein and amino acid metabolism
could be connected to alterations in nitrogen metabolism,
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which have been reported by other studies examining the
effects of vibration exposure [42-44].

Conclusion

When subjected to a cumulative vibration dose of 150
dB, experimental animals show a notable decrease in
albumin levels (P < 0.05) and an increase in the a- and y-
globulin fractions in their blood plasma, indicating a
significant shift in amino acid metabolism. Along with
these protein metabolism alterations, vertical sinusoidal
vibration disrupts amino acid balance, leading to a
decrease in overall amino acids. Specifically, there is a
substantial reduction in aspartic acid (P < 0.05), proline
(P < 0.05), glycine (P < 0.01), valine (P < 0.05),
methionine (P < 0.05), and phenylalanine (P < 0.001).
The primary impact of this vibration exposure is a
decrease in hydrophobic (nonpolar) amino acids such as
valine, phenylalanine, proline, and methionine, in
addition to aspartic acid, which is negatively charged.
Furthermore, significant reductions in methionine and
lysine levels are observed, both of which are crucial for
fat metabolism and blood cell production.
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