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The detrimental effect of vibration, which is considered one of the main physical factors in production, requires comprehensive 

scientific exploration. This study investigates how whole-body vibration influences protein metabolism using laboratory 

animals as a model. Two series of experiments were conducted involving a total of 30 white rats housed under uniform 

environmental conditions. Animals in group 1 were subjected to vibration exposure, whereas group 2 served as the control and 

did not experience any such exposure. The vibration parameters applied to group 1 included general vertical sinusoidal vibration 

at a frequency of 20 Hz and an intensity of 126 dB, administered for 4 hours per day for 8 weeks. The experimental data showed 

that while the total protein concentrations remained largely unaltered, a significant decrease in albumin levels was observed in 

the protein fraction profile. In addition, there was a significant elevation in both α-globulin and γ-globulin fractions. By the 

conclusion of the study, a statistically significant decline in serum concentrations of several total amino acids was detected in 

the vibration-exposed group, including aspartic acid (P < 0.05), proline (P < 0.05), glycine (P < 0.01), valine (P < 0.05), 

methionine (P < 0.05), and phenylalanine (P < 0.001). A general downward trend was also observed in the levels of hydrophobic 

(nonpolar) amino acids—specifically valine, proline, phenylalanine, and methionine—as well as in slightly polar uncharged 

and negatively charged amino acids such as aspartic acid. 
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Introduction 

Among all organic compounds constituting living 

organisms, proteins hold a central role due to their 

intricate molecular structure and critical biological 

functions. They represent the primary component of body 

mass—comprising approximately 20%—in contrast to 

other substances such as fats (14.7%), inorganic salts 

(4.9%), nucleic acids (1.0%), and carbohydrates (1.0%) 

[1–3]. Given their broad functional range—spanning 

catalytic, structural, energetic, transport, hereditary, 

immune, and regulatory roles—understanding how 

protein metabolism responds to environmental influences 

is of substantial scientific interest [4, 5]. 

With the continuous advancement of industrialization 

and urban growth, a rising number of workers are 

routinely subjected to negative physical factors of the 

production environment. This trend inevitably leads to 

increasing exposure to harmful physical conditions at the 

workplace, contributing to cumulative physiological 

strain. As such, the scale of potential health consequences 
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linked to these exposures is significant, underlining the 

pressing societal importance of this issue [6–8]. 

Vibrational impacts stand out among the most critical 

physical production stressors, which informed the 

decision to focus this research specifically on vibration 

as the primary variable [9, 10]. While a wide body of 

research has addressed the broader health implications of 

workplace vibration exposure [11–18], including 

disruptions to multiple physiological systems observed 

both in at-risk professionals and in experimental animal 

models [19–22], detailed insight into its effects on 

protein metabolism remains sparse [23]. 

This study aims to fill that gap by examining how general 

vibration—one of the key physical factors of 

production—affects protein metabolism, using 

laboratory animals as a model to explore these changes 

in a controlled setting. 

Materials and Methods 

To evaluate the adverse impact of vibration as a physical 

production factor, two experimental series were carried 

out using thirty white laboratory rats. The study utilized 

sexually mature Wistar rats, each weighing between 220–

250 grams. All subjects were maintained under identical 

conditions regarding housing, diet, environmental 

hygiene, and sleep-wake cycles. The animals were 

divided into two distinct cohorts: 

 Group 1: rats subjected to vibration exposure; 

 Group 2: control rats that weren’t exposed to 

vibration. 

 

The rats in group 1 experienced general vertical 

sinusoidal vibration at a frequency of 20 Hz and a 

vibration velocity of 126 dB, applied using a VSV-240-

445 vibration stand (produced by Rostech, Russia). The 

cumulative vibration exposure was evaluated using total 

vibration dose metrics, aligning in physical interpretation 

with exposure criteria outlined in international ISO 

standards for noise and vibration [24]. 

Key markers of protein metabolism assessed in this study 

included total plasma protein levels, its fractionation, and 

serum amino acid profiles—the latter being the 

foundational constituents of protein structures [25]. Total 

protein concentrations were measured using an IRF-464 

refractometer (Agroservice, Russia), while 

electrophoresis on paper was employed for analyzing 

protein fractions [26]. Quantification of amino acids in 

serum was performed with an automatic AAA-500 amino 

acid analyzer (INGOS, Czech Republic). 

All experimental data were analyzed using conventional 

statistical methods, including the calculation of the 

arithmetic mean (M) and standard error (m). The 

significance of differences between data sets was 

determined through coefficient calculation and Student’s 

t-test to establish the level of statistical confidence. 

Results and Discussion 

Effectively addressing the mechanisms through which 

general vibration impacts the body requires an in-depth 

examination of alterations in metabolic pathways, 

particularly those involving protein and amino acid 

metabolism [27]. Proteins, serving as the structural 

foundation of cells, represent the most quantitatively 

dominant organic compounds across living organisms, 

especially in more complex species [28, 29]. In light of 

this, a targeted investigation was conducted to determine 

how protein metabolism responds under conditions of 

experimental vibration exposure. 

Findings from this study revealed that subjecting animals 

to vibration with a frequency of 35 Hz and a vibration 

velocity of 126 dB for 4 hours daily over 8 weeks—

resulting in a cumulative exposure of 150 dB—did not 

lead to statistically significant alterations in total protein 

levels (Table 1). The mean total protein value recorded 

in the vibration-exposed group was 6.18 ± 0.11%, 

compared to 6.35 ± 0.1% in the control group. 

Nevertheless, a marked decline in the proportion of 

albumin within the protein fractions was observed, 

decreasing from 55.18% to 49.20%. Concurrently, there 

was a noticeable elevation in both α-globulin and γ-

globulin fractions (Table 1), indicating that although 

total protein remained relatively stable, the distribution 

among protein subtypes was notably affected. 

 

Table 1. Indicators of protein metabolism under the influence of vibration with parameters f = 35 Hz, Lv = 126 dB, 

time t = 4 hours, cumulative dose of vibration 150 dB 

Groups, statistical 

indicators 

Total 

protein (%) 

Protein fractions 

Albumins (%) Globulins (%) 
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α β γ 

M ± m 

Control 6.35 ± 0.13 55.18 ± 2.4 12.56 ± 0.21 20.71 ± 0.4 13.13 ± 0.70 

Experience 6.18 ± 0.11 49.20 ± 1.10 14.20 ± 0.63 19.1 ± 1.20 16.9 ± 0.44 

Р > 0.05 < 0.05 < 0.05 > 0.05 > 0.05 

 

The observed reduction in albumin levels may be closely 

linked to alterations in amino acid metabolism, 

particularly tryptophan, which is essential for the 

production of nicotinic acid (PP), serum proteins, and 

hemoglobin synthesis [30, 31]. Additionally, tryptophan 

acts as a growth factor, and its demand is higher in 

younger organisms, which may explain the impaired 

weight gain in developing rats subjected to prolonged 

vibration exposure [20, 32, 33]. 

Amino acids are integral to the formation of proteins and 

other biologically active compounds in the body [34], but 

they also serve as a source of energy [35]. The body of 

higher animals metabolizes both exogenous amino acids, 

obtained from food proteins, and endogenous amino 

acids, which are produced through the body’s metabolic 

renewal processes [36]. The findings from the study 

indicated a significant reduction in the overall 

concentration of amino acids in the blood serum of the 

rats by the end of the exposure period (Figure 1). 

 
Figure 1. Dynamics of changes in amino acid content under the influence of vibration with a cumulative dose of 

150 dB (confidence (P): * 0.05; ** 0.01; *** 0.001) 

Amid the overall reduction in amino acids, a significant 

decline was noted in the levels of aspartic acid (P < 0.05), 

proline (P < 0.05), glycine (P < 0.01), valine (P < 0.05), 

methionine (P < 0.05), and phenylalanine (P < 0.001). 

Specifically, there was a decrease in the hydrophobic 

(nonpolar) amino acids, such as valine, proline, 

phenylalanine, and methionine, as well as slightly polar 

uncharged amino acids and negatively charged ones like 

aspartic acid. The reduction in methionine is particularly 

significant, given its role in fat metabolism by 

influencing fat-phospholipid processes and being a key 

lipotropic agent that helps prevent the development of 

fatty liver [37, 38]. Furthermore, methionine plays an 

essential role in donating methyl groups for choline 

synthesis, which acts as an anti-atherosclerotic agent 

[39]. Additionally, vibration exposure resulted in 

decreased lysine levels, which is vital for hematopoiesis. 

A deficiency in lysine is associated with a reduction in 

red blood cell production and hemoglobin levels [40], as 

well as disruptions in bone calcification and muscle 

wasting [41]. 

These disturbances in protein and amino acid metabolism 

could be connected to alterations in nitrogen metabolism, 
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which have been reported by other studies examining the 

effects of vibration exposure [42-44]. 

Conclusion 

When subjected to a cumulative vibration dose of 150 

dB, experimental animals show a notable decrease in 

albumin levels (P < 0.05) and an increase in the α- and γ-

globulin fractions in their blood plasma, indicating a 

significant shift in amino acid metabolism. Along with 

these protein metabolism alterations, vertical sinusoidal 

vibration disrupts amino acid balance, leading to a 

decrease in overall amino acids. Specifically, there is a 

substantial reduction in aspartic acid (P < 0.05), proline 

(P < 0.05), glycine (P < 0.01), valine (P < 0.05), 

methionine (P < 0.05), and phenylalanine (P < 0.001). 

The primary impact of this vibration exposure is a 

decrease in hydrophobic (nonpolar) amino acids such as 

valine, phenylalanine, proline, and methionine, in 

addition to aspartic acid, which is negatively charged. 

Furthermore, significant reductions in methionine and 

lysine levels are observed, both of which are crucial for 

fat metabolism and blood cell production. 
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