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Thrombosis of vascular prostheses is one of the most important complications following surgical procedures on the lower 

extremity arteries. Unfortunately, preventing the surgical thread from interacting with flowing blood is nearly impossible, which 

makes the surgical site prone to thrombosis. This study aimed to investigate the potential for increasing the thromboresistance 

of polypropylene suture material by modifying its surface with heparin through chemical inoculation. To achieve this goal, a 

solution of heparin was applied to the polypropylene filament’s surface, along with a polyhydroxybutyrate/oxivalerate 

copolymer. A polymethacrylyl chloride underlayer was introduced to ensure the strong bonding of heparin to the polymer. The 

polymer reacted with heparin, creating durable covalent ester bonds. A smooth surface was achieved by applying a thin 

polyhydroxybutyrate/oxivalerate layer no thicker than 4 microns. After undergoing chemical modification and heparin 

application, the filament developed a uniform, spongy texture, resulting from a newly formed polymer layer with securely 

attached heparin. This process opens the possibility of creating a bio- and hemocompatible coating based on a biodegradable 

polymer and heparin for use on the surface of polypropylene sutures. 
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Introduction 

The number of reconstructive vascular procedures, 

particularly involving the arteries of the lower limbs, 

continues to grow both in Russia and globally [1, 2]. A 

major postoperative complication associated with these 

interventions is thrombosis of the vascular prosthesis, 

with incidence rates reported as high as 45% [3]. 

Vascular surgery demands specific properties from 

suture materials, among which the prevention of thread 

intrusion into the vessel lumen and contact with 

circulating blood is paramount [4, 5]. However, 

achieving complete avoidance of such contact remains 

extremely difficult. When the endothelial lining of the 

arterial wall is disrupted at the suture site and the thread 

protrudes into the vessel interior, the anastomosis 

becomes a prime site for thrombus formation—a 

challenge that significantly complicates vascular surgical 

outcomes [6–8]. 

Despite a variety of modern suture materials on the 

market, including those engineered with antibacterial or 

anti-inflammatory properties [9–14], none are currently 

designed to resist thrombosis, leaving a critical gap in 

surgical practice. Both venous and arterial thrombosis are 

recognized as severe complications following surgery 

[15, 16], and data suggests that nearly 4% of operations 

result in such thrombotic events [17, 18]. Factors like 

advanced age with coronary artery disease, male sex, and 

prior venous thromboembolism are recognized 

contributors to these outcomes [19–21]. While there is 

limited information directly linking postoperative 

thrombosis to infectious processes, existing studies 

suggest that systemic infections marked by inflammation 

and hypercoagulability may increase the risk of thrombus 

development [22, 23]. 
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Chronic inflammatory states further elevate the 

likelihood of cardiovascular incidents such as myocardial 

infarction, stroke, deep vein thrombosis, and pulmonary 

embolism [24–27]. The underlying mechanism is thought 

to involve enhanced platelet activity, elevated fibrin 

production, and upregulation of tissue factors, 

collectively promoting a hypercoagulable environment 

[28–30]. 

This study seeks to assess the feasibility of chemically 

modifying the surface of polypropylene suture threads by 

grafting heparin through inoculation techniques, to 

enhance their thromboresistant characteristics. 

Materials and Methods 

In this study, polypropylene suture material with a 

thickness of 3/0 was utilized as the base. To modify its 

surface, a polyhydroxybutyrate/oxivalerate (PHBV) 

copolymer with a molecular weight of 280 kDa and a 

0.5% solution of unfractionated heparin were applied. 

For secure heparin attachment, a supplementary 

polymethacrylyl chloride sublayer was incorporated. 

This intermediate layer, chemically bonded to the 

polymer filament, contained reactive functional groups 

capable of forming durable covalent linkages with 

heparin. Methacrylyl chloride (also known as 

methacrylic acid chlorangidride) was employed to 

generate this reactive sublayer. The initiation of grafting 

was facilitated by the inclusion of purified benzoyl 

peroxide (BP) or dinitrile azo-bis-isobutyric acid (DAA) 

into the PHBV solution, serving as initiators at a 

concentration of 2% relative to the polymer’s mass. 

Methacrylyl chloride was introduced in vapor form 

during thermal treatment to ensure effective binding to 

PHBV. The grafting of heparin onto the chemically 

modified surface was executed using a bicarbonate buffer 

solution under low-temperature conditions. Post-

grafting, the threads were thoroughly rinsed with distilled 

water and subsequently vacuum-dried at ambient 

temperature over phosphorus pentoxide (P₂O₅) for 48 

hours. 

The effectiveness of heparin grafting onto the polymer 

substrate was analyzed through diffuse reflectance 

infrared spectroscopy, conducted with a Bruker Vertex 

80v IR Fourier spectrometer (Germany). To maximize 

the surface area for spectral analysis, the treated threads 

were carefully wound around a dual-layer aluminum foil 

plate measuring 0.5 × 2.0 cm, creating a fully enclosed 

area of 0.5 × 0.5 cm. 

Assessment of the surface coating quality was carried out 

using scanning electron microscopy (SEM), employing 

the Hitachi-S3400N instrument (Japan). 

Results and Discussion 

The use of radiation-chemical methods for grafting 

heparin onto polymer surfaces to enhance 

hemocompatibility has been documented extensively in 

scientific sources [31–34]. These approaches typically 

involve modifying the polymer base through graft 

copolymerization with methacrylyl chloride, which 

subsequently interacts with heparin to establish durable 

covalent ester bonds. However, the conventional 

technique involving gamma radiation presents 

considerable limitations—it is complex, poses safety 

risks, and is impractical for application in industrial-scale 

manufacturing. In contrast, the chemical initiation of 

methacrylyl chloride graft copolymerization has emerged 

as a more viable and efficient alternative [35]. 

The application of an active sublayer containing 

chlorohydride functional groups was achieved via 

radical-based grafting using initiators such as benzoyl 

peroxide (BP) or dinitrile azo-bis-isobutyric acid (DAA). 

Upon thermal activation, these initiators decompose into 

highly reactive radicals (Figure 1), which subsequently 

interact with the polymer matrix—specifically PHBV—

by extracting hydrogen atoms, thereby producing 

macroradicals (Figure 2). These macroradicals then 

undergo a reaction with methacrylyl chloride, resulting in 

the formation of a grafted copolymer structure.

 

 
a) 
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b) 

Figure 1. Formation of radicals when heated: a) benzoyl peroxide (BP), and b) dinitrile azo-bis-isobutyric acid 

(DAA) 

 

 
Figure 2. Formation of the grafted copolymer PHBV-methacrylyl chloride 

 

Following graft copolymerization with methacrylyl 

chloride, the altered polymer substrate underwent a 

chemical reaction with heparin, leading to the 

formation of stable covalent ester linkages (Figure 

3). 

 

 
Figure 3. Inoculation of heparin on the surface of a modified polypropylene thread 

 

To evaluate the grafting of heparin onto the polymer 

substrate, diffuse infrared spectroscopy was employed—

a well-established analytical technique for assessing 

surface composition across a wide range of materials [36, 

37]. This non-destructive method enables accurate 

detection of surface chemical modifications without 

altering the structural integrity of the sample. Analysis of 

the obtained spectrum (Figure 4) reveals several 

distinguishing spectral features when comparing the 

heparin-modified suture to the unmodified 

polypropylene thread coated with PHBV: 

 A noticeable rise in absorption within the 3400–3000 

cm⁻¹ range, attributed to the emergence of numerous 

hydroxyl groups introduced by the grafted heparin; 

 In addition to the prominent peak at 1740–1720 

cm⁻¹—typical of the carboxylic ester group present in 

PHBV—new signals appear at 1696 cm⁻¹, 

corresponding to the vibrational absorption of 

carboxylic acid groups (COOH) from heparin and 

hydrogen-bonded polymethacrylic acid, and at 1637 

cm⁻¹, indicating the presence of carboxylate anions 

(COO⁻) derived from both heparin and 

polymethacrylic acid. 
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These spectral changes validate the successful grafting of 

heparin onto the polymer surface. Furthermore, both 

initiators used in the grafting process—dinitrile 

azobisisobutyric acid and benzoyl peroxide—

demonstrated similar efficacy in initiating the 

copolymerization reaction. 

 

 
Figure 4. Diffuse reflection spectra of samples of modified suture material in the infrared range 

 

The influence of surface modification on the structural 

characteristics of polypropylene filament was examined 

using scanning electron microscopy. Initially, the 

untreated polypropylene thread exhibited pronounced 

longitudinal grooves, which are typical artifacts resulting 

from the extrusion process during molding (Figure 5a). 

The application of a thin, even coating of PHBV—

measuring less than 4 microns in thickness—eliminated 

these ridges and rendered the surface smooth and uniform 

(Figure 5b). Following subsequent chemical 

modification and heparin integration, the surface 

morphology of the filament transformed into a 

consistently porous, sponge-like texture (Figure 5c), 

indicating the successful formation of a new polymeric 

layer with securely bonded heparin. 

 

   
a) b) c) 

Figure 5. Scanning electron microscopy of the suture surface (magnification x500): a) unmodified thread, b) 

thread + PGBV, and c) thread + PGBV + modifying layer + heparin. 

 

Conclusion 

The findings of this study highlight the viability of the 

selected approach for enhancing suture materials. A 

biocompatible and hemocompatible surface layer can be 

developed by incorporating heparin into a biodegradable 

polymer matrix applied to polypropylene threads. 

Coating the thread with a thin film of 

polyhydroxybutyrate/oxivalerate, no thicker than 4 

microns, leads to a visibly smoother surface. Subsequent 

chemical treatment and heparin grafting result in the 

formation of a consistent, sponge-like outer layer, which 
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reflects the successful integration of a new polymer 

structure containing firmly bonded heparin. This 

chemically induced grafting technique offers a reliable 

method for anchoring anticoagulant agents to the thread 

surface, potentially improving the thromboresistant 

characteristics of the surgical suture material. 
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