

2024, Volume 4, Issue 1, Page No: 17-23

ISSN: 3108-4834

Society of Medical Education & Research

Archive of International Journal of Cancer and Allied Science

Recent Advances in the Diagnostics and Management of Medullary Thyroid Carcinoma: Emphasis on Biomarkers and Thyroidectomy in Neuroendocrine Neoplasms

Michał Miciak^{1*}, Krzysztof Jurkiewicz¹

¹Department of General, Minimally Invasive and Endocrine Surgery, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland.

***E-mail** ⊠ michal.miciak00@gmail.com

Abstract

Medullary thyroid carcinoma (MTC) is an uncommon neuroendocrine tumor that originates from the parafollicular C cells in the thyroid. Unlike the more common papillary carcinoma, MTC tends to progress more aggressively and is prone to metastasis that is often unresponsive to chemotherapy. The main therapeutic approaches for MTC include surgical intervention and pharmacological treatments. Recent years have seen significant progress, particularly in the pharmacological management of MTC. This review aims to examine the diagnostic and treatment strategies for MTC, incorporating the latest findings. A thorough search was conducted in databases such as PubMed, PubMed Central, and Google Scholar, using keywords related to MTC, its molecular and imaging diagnostics, thyroidectomy, and systemic pharmacotherapy. Only articles published in English were considered, and abstracts were reviewed for relevance. The selected articles primarily included original research studies and meta-analyses. A total of 39 articles were included for detailed analysis. This mini-review highlights the diagnostic techniques for MTC and emphasizes the importance of biomarker-level testing. In particular, calcitonin shows a strong correlation with tumor progression. The standard treatment for MTC includes total thyroidectomy accompanied by cervical lymph node dissection. In certain cases, systemic therapy, particularly with tyrosine kinase (TK) inhibitors, is also indicated. Ongoing research is investigating innovative treatments such as gene therapy and the inhibition of tumor mitochondrial metabolism. MTC is a fast-growing neuroendocrine tumor that requires comprehensive surgical treatment. When surgery is not feasible, therapies that target different stages of tumor carcinogenesis are employed. The development of new pharmacological agents continues to improve treatment outcomes.

Keywords: Neuroendocrine neoplasm, Medullary thyroid carcinoma, Diagnostics, Cancer management, Thyroidectomy, Biomarkers

Introduction

Medullary thyroid carcinoma (MTC) is an uncommon neuroendocrine tumor that develops from the parafollicular C cells in the thyroid gland. Representing less than 5% of all thyroid cancers, it remains a relatively rare condition [1]. The tumor is known to produce calcitonin and carcinoembryonic antigen (CEA), which serve as biomarkers detectable through biochemical

Access this article online

https://smerpub.com/

Received: 12 January 2024; Accepted: 02 April 2024

Copyright CC BY-NC-SA 4.0

How to cite this article: Miciak M, Jurkiewicz K. Recent Advances in the Diagnostics and Management of Medullary Thyroid Carcinoma: Emphasis on Biomarkers and Thyroidectomy in Neuroendocrine Neoplasms. Arch Int J Cancer Allied Sci. 2024;4(1):17-23. https://doi.org/10.51847/ar1ylTQfNa

assays [2]. MTC often arises in the upper posterior regions of the thyroid lobes, where C cells are more concentrated. While most MTC cases occur sporadically, about 25% are linked to inherited endocrine syndromes like MEN2B or MEN2A, or present within families without additional endocrine disorders. A hallmark of MTC is the presence of mutations in the RET proto-oncogene. Clinically, patients may notice a palpable thyroid nodule. At diagnosis, metastasis is common, with 70% of cases involving cervical lymph node spread and 10-15% exhibiting distant metastases to organs such as the liver, bones, lungs, and brain. Additionally, high calcitonin levels often cause gastrointestinal symptoms, including diarrhea [1, 3].

This review aims to examine the diagnostic and treatment strategies for MTC, incorporating the latest findings.

Materials and Methods

For this mini-review, a comprehensive search was conducted on PubMed, PubMed Central, and Google Scholar. Research articles published over the last decade focusing on the management of MTC were prioritized. Key search terms included "MTC diagnosis," "medullary thyroid cancer," "thyroidectomy," "calcitonin," and "MTC systemic treatment." Abstracts were reviewed, and only original research papers and meta-analyses were chosen. The articles selected were from the fields of surgical oncology, clinical oncology, and endocrinology provided they offered an in-depth analysis of the topic. In total, 39 studies were included in this review.

Results and Discussion

Diagnostics

The diagnosis of medullary thyroid carcinoma (MTC) involves biochemical assessments, imaging techniques, and biopsy analysis. Imaging modalities like ultrasound and computed tomography are essential for pinpointing lesions detected during clinical examination. If distant metastasis is suspected, additional imaging, such as multidetector tomography, contrast-enhanced magnetic resonance imaging (MRI) of the liver, and bone is scintigraphy recommended. However, fluorodeoxyglucose positron emission tomography (PET) scans have a lower sensitivity for identifying metastases [4]. Fine-needle aspiration (FNA) biopsy is commonly performed but can sometimes lead to misdiagnosis, identifying MTC as a non-neuroendocrine thyroid tumor (e.g., papillary carcinoma) or other malignancies (such as sarcomas or plasmacytomas). Therefore, such findings should be corroborated with biochemical tests, which are crucial in MTC diagnosis [5]. One of the most reliable biomarkers for diagnosing MTC is calcitonin, whose serum levels increase proportionally with tumor size. Suspicion of MTC is raised when calcitonin levels range between 60-100 pg/ml, while levels reaching 500 pg/ml may signal distant metastases. However, elevated calcitonin levels can also occur due to factors such as proton pump inhibitors, renal impairment, or hypercalcemia [1, 4]. Due to the rarity of MTC, not all guidelines advocate for routine calcitonin measurement in patients with thyroid tumors. Consequently, alternative biomarkers are being investigated assist with diagnosis [6]. Carcinoembryonic antigen (CEA) has been identified as

a potential marker, with its levels correlating with the MTC stage. Unlike calcitonin, which exhibits a direct relationship with tumor progression, elevated CEA levels (typically > 270 ng/ml) are associated with advanced stages, and levels exceeding 500 ng/ml are linked to higher mortality rates [7]. Recent studies have also proposed the Ca19.9 antigen as a prognostic biomarker for MTC, with elevated levels observed in 16% of clinical trial participants [8]. Additionally, the potential role of procalcitonin as a diagnostic marker in MTC is under evaluation, with findings suggesting a sensitivity and specificity of 96%, especially in calcitonin-negative patients [9]. Despite ongoing research into other markers, such as circulating miR-375 micro-RNA, calcitonin, and CEA continue to serve as the primary diagnostic indicators for MTC [1, 10]. Table 1 provides a summary of these markers. It is essential to adopt a comprehensive clinical approach, as other cancers, such as pancreatic or colorectal cancer, may also lead to false-positive results by elevating similar biomarkers.

Table 1. Biomarkers used in MTC diagnostics

Marker	Notes
Calcitonin	Levels rise with MTC tumor size, and a
	range of 60-100 pg/ml raises suspicion
	for MTC.
CEA	Elevated levels (> 270 ng/ml) are
	typically observed in advanced MTC
	stages.
Ca19.9	Linked to poor prognosis in MTC cases.
Procalcitonin	Useful in cases of MTC suspicion where
	calcitonin levels are negative.
miR-375 micro-RNA	Currently under investigation in clinical
	trials for potential diagnostic value in
	MTC.

Therapeutic approaches

The standard approach to managing MTC begins with total thyroidectomy along with lymph node dissection. However, distant metastases often show limited response to conventional chemotherapy and radiotherapy, prompting the exploration of newer treatment strategies, including tyrosine kinase (TK) inhibitors, gene therapy, and immunotherapy. For recurrent MTC, monitoring calcitonin levels is crucial. An increase in this biomarker post-thyroidectomy signals the potential need for systemic treatment [11].

Surgical interventions

Current treatment guidelines place surgery as the primary approach for MTC. Most patients undergo traditional surgical procedures, although transoral endoscopic thyroidectomy via vestibular access is gaining popularity [5, 12-14]. A significant concern during surgery is the inadvertent removal of the parathyroid glands, which can result in hypoparathyroidism. To prevent this, modern techniques using autofluorescence allow for precise visualization of these structures, minimizing the risk of unintentional damage [15, 16]. Due to the relatively low recurrence rate (around 6%) of the tumor in the contralateral thyroid lobe, total thyroidectomy coupled with resection of central compartment lymph nodes is preferred over hemithyroidectomy [17]. For patients with metastatic disease, a tailored approach is advised. This might involve less extensive removal of lymph nodes in the medial and lateral compartments to reduce potential side effects and long-term complications of more aggressive surgeries [18, 19].

Systemic treatment of MTC

Tyrosine kinase (TK) inhibitors represent a significant advancement in the treatment of MTC. Both laboratory and clinical investigations have introduced several promising compounds within this class, which can be divided into pyridine and purine inhibitors, with some functioning as multi-target inhibitors that act on various factors and proto-oncogenes. A study by Kapiteijn et al. [20] showed that the use of gefitinib, a targeted TK inhibitor, stabilized the disease for up to 24 weeks in certain patients. Other inhibitors, such as axitinib (a multi-kinase inhibitor), vandetanib, and sorafenib, were also examined during this period. Among them, sunitinib showed the most significant tumor stabilization, achieving a response rate of up to 87% [21, 22]. Alectinib has demonstrated potential due to its lack of VEGFR2 inhibition, preventing the unwanted anti-angiogenic effects typically associated with this target. Other compounds, including carboxamide and quinazoline inhibitors, have shown promising results [23, 24]. A clinical trial by Krajewska et al. [25] highlighted the efficacy of cabozantinib, a multi-inhibitor drug targeting VEGF, EGF, MET, and RET proto-oncogenes, showing survival rates ranging from 11 to 44 months based on the presence of the RET M918T mutation. Cabozantinib has also been studied for use in treating other solid tumors and blood cancers, although side effects such as diarrhea, hypertension, and hand-foot syndrome were reported. Nonetheless, it is approved for use in MTC and as a second-line treatment for renal cell carcinoma, also showing activity against tumor metastases by inhibiting AXL kinase [26, 27].

Lenvatinib, another TK inhibitor, targets multiple factors including VEGFR-1, 2, and 3, FGFR-1-4, PDGFRα, and RET, and demonstrated an 80% disease control rate in a study of 59 patients with inoperable MTC, marking it as one of the most effective drugs in its category [28]. Del Rivero *et al.* [29] investigated the combination of vandetanib and bortezomib (an inhibitor of 26S proteasome activity), but while bortezomib reduced RET expression, its therapeutic potential was insufficient to continue further studies.

Emerging kinase inhibitors are also showing promise in MTC treatment. Selpercatinib, a highly selective RET inhibitor, and pralsetinib, which is up to 28 times more potent against wild-type RET mutations, have demonstrated response rates of 73% and 71%, respectively. With the growing number of RET mutations in MTC, these findings provide hope for future treatment advances [30-32]. A study by Dicitore et al. [33] focused on the cAMP-dependent protein kinase A pathway, which plays a role in RET proto-oncogene activity. The compound 8-chloroadenosine-3',5'-cyclic monophosphate (8-ClcAMP) demonstrated significant anti-cancer activity by inhibiting tumor cell proliferation [33]. Additionally, salinomycin, a polyether ionophore antibiotic, was investigated for its ability to block RET proto-oncogene activity, showing promise by inhibiting the PI3K/Akt/mTOR pathway. Certain derivatives of salinomycin also reduced RET expression by targeting the LRP6-Frizzled-Wnt complex, suggesting its potential as a candidate for future clinical trials [34].

Compared to conventional chemotherapy, kinase and RET inhibitors have shown greater efficacy in treating MTC. A review by Hadoux and Schlumberger [35] noted that chemotherapy response rates typically did not exceed 20%, with the combination of 5-fluorouracil and dacarbazine or capecitabine being considered the most effective treatment regimen. This distinguishes MTC from other neuroendocrine tumors like pheochromocytoma or gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Retinoids, when combined with radioactive iodine, have also been explored but have not gained widespread acceptance due to their low response rates [36]. Depsipeptide, a histone deacetylase inhibitor, has not been widely adopted for MTC treatment due to significant side effects [37]. In contrast, thalidomide and its non-teratogenic derivative, lenalidomide, have shown encouraging results, with stabilization observed in half of the patients [38]. Other agents, such as combrestatine A4 phosphate, which disrupts microtubules during cell division, have led to disease stabilization in half of the patients for at least a year. Sodium iodide symporter (NIS) is also being explored for its potential in MTC gene therapy. Somatostatin analogs, like lanreotide and octreotide, are also gaining interest as part of MTC therapy due to their established effectiveness in other neuroendocrine tumors [39, 40]. Recently, mitochondrial metabolism has become a focus of MTC research. MitoQ, a compound

that suppresses MTC cells by disrupting mitochondrial function, has shown effectiveness against drug-resistant cancer cells. Additionally, the mitochondrial chaperone mortalin, overexpressed in MTC, is being targeted by the dye MKT-077, although it has not undergone clinical trials due to renal toxicity. Other derivatives of MKT-077 are currently under investigation for their potential role in MTC treatment [41]. **Figure 1** provides an overview of the management approach for MTC patients.

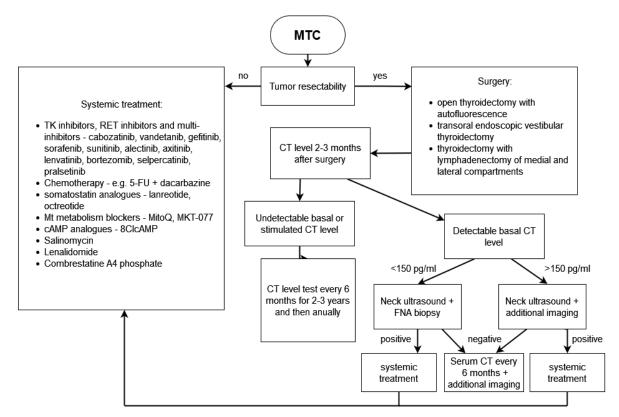


Figure 1. Management algorithm for patients with MTC.

Conclusion

Medullary thyroid carcinoma (MTC) is an uncommon neuroendocrine tumor primarily linked to genetic mutations. It is generally more aggressive than papillary thyroid carcinoma, and its diagnosis is often prompted by clinical signs indicative of excessive calcitonin secretion. The most critical diagnostic tool for MTC is the measurement of biomarkers, particularly calcitonin, as fine-needle aspiration (FNA) has limited sensitivity in detecting this type of cancer. The standard treatment for MTC involves total thyroidectomy followed by cervical lymph node dissection. For patients with distant metastases, chemotherapy and radiotherapy have

minimal effect, necessitating alternative systemic therapies for inoperable tumors or metastatic cases. Significant advancements have been made over the last decade in developing novel therapeutic agents targeting gene pathways and the mechanisms driving MTC carcinogenesis, offering promising prospects for future treatments.

Acknowledgments: None

Conflict of Interest: None

Financial Support: None

Ethics Statement: None

References

- Bartz-Kurycki MA, Oluwo OE, Morris-Wiseman LF. Medullary thyroid carcinoma: recent advances in identification, treatment, and prognosis. Ther Adv Endocrinol Metab. 2021;12:20420188211049611. doi:10.1177/20420188211049611
- Angelousi A, Hayes AR, Chatzellis E, Kaltsas GA, Grossman AB. Metastatic medullary thyroid carcinoma: a new way forward. Endocr Relat Cancer. 2022;29(7):R85-R103. doi:10.1530/ERC-21-0368
- Randle RW, Balentine CJ, Leverson GE, Havlena JA, Sippel RS, Schneider DF, et al. Trends in the presentation, treatment, and survival of patients with medullary thyroid cancer over the past 30 years. Surgery.
 2017;161(1):137-46. doi:10.1016/j.surg.2016.04.053
- Thomas CM, Asa SL, Ezzat S, Sawka AM, Goldstein D, et al. Diagnosis and pathologic characteristics of medullary thyroid carcinomareview of current guidelines. Curr Oncol. 2019;26(5):338-44. doi:10.3747/co.26.5539
- Wells Jr SA, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. American thyroid association guidelines task force on medullary thyroid carcinoma. revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567-610. doi:10.1089/thy.2014.0335
- Censi S, Manso J, Mian C. Other markers of medullary thyroid cancer, not only calcitonin. Eur J Endocrinol. 2023;188(1):lvac009. doi:10.1093/ejendo/lvac009
- 7. Turkdogan S, Forest VI, Hier MP, Tamilia M, Florea A, Payne RJ. Carcinoembryonic antigen levels correlated with advanced disease in medullary thyroid cancer. J Otolaryngol Head Neck Surg. 2018;47(1):55. doi:10.1186/s40463-018-0303-x
- 8. Lorusso L, Romei C, Piaggi P, Fustini C, Molinaro E, Agate L, et al. Ca19.9 Positivity and doubling time are prognostic factors of mortality in patients with advanced medullary thyroid cancer with no evidence of structural disease progression according to response evaluation criteria in solid tumors. Thyroid. 2021;31(7):1050-5. doi:10.1089/thy.2020.0060

- Trimboli P, Giovanella L. Procalcitonin as marker of recurrent medullary thyroid carcinoma: a systematic review and meta-analysis. Endocrinol Metab (Seoul). 2018;33(2):204-10. doi:10.3803/EnM.2018.33.2.204
- Romeo P, Colombo C, Granata R, Calareso G, Gualeni AV, Dugo M, et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr Relat Cancer. 2018;25(3):217-31. doi:10.1530/ERC-17-0389
- 11. Treglia G, Rufini V, Piccardo A, Imperiale A. Update on management of medullary thyroid carcinoma: focus on nuclear medicine. Semin Nucl Med. 2023;53(4):481-9. doi:10.1053/j.semnuclmed.2023.01.003
- 12. Viola D, Elisei R. Management of medullary thyroid cancer. Endocrinol Metab Clin North Am. 2019;48(1):285-301. doi:10.1016/j.ecl.2018.11.006
- 13. Yamashita TS, Rogers RT, Foster TR, Lyden ML, Morris JC, Thompson GB, et al. Medullary thyroid cancer: What is the optimal management of the lateral neck in a node-negative patient at index operation? Surgery. 2022;171(1):177-81. doi:10.1016/j.surg.2021.04.052
- 14. Kim M, Kim BH. Current guidelines for management of medullary thyroid carcinoma. Endocrinol Metab. 2021;36(3):514-24. doi:10.3803/EnM.2021.1082
- 15. Lukinović J, Bilić M. Overview of thyroid surgery complications. Acta Clin Croat. 2020;59(Supplement 1):81-6. doi:10.20471/acc.2020.59.s1.10
- Solórzano CC, Thomas G, Berber E, Wang TS, Randolph GW, Duh QY, et al. Current state of intraoperative use of near-infrared fluorescence for parathyroid identification and preservation. Surgery. 2021;169(4):868-78. doi:10.1016/j.surg.2020.09.014
- 17. Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856-83. doi:10.1093/annonc/mdz400
- Mitchell AL, Gandhi A, Scott-Coombes D, Perros P. Management of thyroid cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S150-60. doi:10.1017/S0022215116000578

- Ito Y, Onoda N, Okamoto T. The revised clinical practice guidelines on the management of thyroid tumors by the Japan associations of endocrine surgeons: core questions and recommendations for treatments of thyroid cancer. Endocr J. 2020;67(7):669-717. doi:10.1507/endocrj.EJ20-0025
- Kapiteijn E, Schneider TC, Morreau H, Gelderblom H, Nortier JW, Smit JW. New treatment modalities in advanced thyroid cancer. Ann Oncol. 2012;23(1):10-8. doi:10.1093/annonc/mdr117
- Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 2010;28(14):2323-30. doi:10.1200/JCO.2009.25.0068
- Cohen EE, Needles BM, Cullen KJ, Wong SJ, Wade III JL, Ivy SP, et al. Phase 2 study of sunitinib in refractory thyroid cancer. J Clin Oncol. 2008;26(15_suppl):6025.
- Mologni L, Gambacorti-Passerini C, Goekjian P, Scapozza L. RET kinase inhibitors: a review of recent patents (2012-2015). Expert Opin Ther Pat. 2017;27(1):91-9. doi:10.1080/13543776.2017.1238073
- Ernani V, Kumar M, Chen AY, Owonikoko TK. Systemic treatment and management approach for medullary thyroid cancer. Cancer Treat Rev. 2016;50:89-98. doi:10.1016/j.ctrv.2016.09.006
- Krajewska J, Olczyk T, Jarzab B. Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer. Expert Rev Clin Pharmacol. 2016;9(1):69-79. doi:10.1586/17512433.2016.1102052
- Belum VR, Serna-Tamayo C, Wu S, Lacouture ME. Incidence and risk of hand-foot skin reaction with cabozantinib, a novel multikinase inhibitor: a metaanalysis. Clin Exp Dermatol. 2016;41(1):8-15. doi:10.1111/ced.12694
- Grüllich C. Cabozantinib: multi-kinase inhibitor of MET, AXL, RET, and VEGFR2. Recent Results Cancer Res. 2018;211:67-75. doi:10.1007/978-3-319-91442-8
- Maia AL, Wajner SM, Vargas CV. Advances and controversies in the management of medullary thyroid carcinoma. Curr Opin Oncol. 2017;29(1):25-32. doi:10.1097/CCO.0000000000000340
- 29. Del Rivero J, Edgerly M, Ward J, Madan RA, Balasubramaniam S, Fojo T, et al. Phase I/II trial of

- vandetanib and bortezomib in adults with locally advanced or metastatic medullary thyroid cancer. Oncologist. 2019;24(1):16-e14. doi:10.1634/theoncologist.2018-0452
- Jager EC, Broekman KE, Kruijff S, Links TP. State-of-the-art and future directions in the systemic treatment of medullary thyroid cancer. Curr Opin Oncol. 2022;34(1):1-8. doi:10.1097/CCO.0000000000000798
- 31. Seib CD, Beck TC, Kebebew E. A contemporary review of the treatment of medullary thyroid carcinoma in the era of new drug therapies. Surg Oncol Clin N Am. 2023;32(2):233-50. doi:10.1016/j.soc.2022.10.002
- 32. Højer Wang L, Wehland M, Wise PM, Infanger M, Grimm D, Kreissl MC. Cabozantinib, vandetanib, pralsetinib, and selpercatinib as treatment for progressed medullary thyroid cancer with a main focus on hypertension as adverse effect. Int J Mol Sci. 2023;24(3):2312. doi:10.3390/ijms24032312
- 33. Dicitore A, Grassi ES, Caraglia M, Borghi MO, Gaudenzi G, Hofland LJ, et al. The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines. Endocrine. 2016;51:101-12. doi:10.1007/s12020-0150597-7
- 34. Alqahtani T, Kumarasamy VM, Huczyński A, Sun D. Salinomycin and its derivatives as potent RET transcriptional inhibitors for the treatment of medullary thyroid carcinoma. Int J Oncol. 2020;56(1):348-58. doi:10.3892/ijo.2019.4916
- 35. Hadoux J, Schlumberger M. Chemotherapy and tyrosine-kinase inhibitors for medullary thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2017;31(3):335-47. doi:10.1016/j.beem.2017.04.009
- 36. Tepmongkol S, Keelawat S, Honsawek S, Ruangvejvorachai P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma. Thyroid. 2010;18(7):697-704. doi:10.1089/thy.2008.0056
- 37. Woyach JA, Kloos RT, Ringel MD, Arbogast D, Collamore M, Zwiebel JA, et al. Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine refractory thyroid carcinoma. J Clin Endocrinol Metab. 2009;94(1):164-70. doi:10.1210/jc.2008-1631

- Ain KB, Lee C, Holbrook KM, Dziba JM, Williams KD. Phase II study of lenalidomide in distantly metastatic, rapidly progressive, and radioiodine-unresponsive thyroid carcinomas: preliminary results. Proc Am Soc Clin Oncol. 2010;26(15_suppl):6027.
- 39. Cooney MM, Savvides P, Agarwala S, Wang D, Flick S, Bergant S, et al. Phase II study of combrestatin A4 phosphate (CA4P) in patients with advanced anaplastic thyroid carcinoma (ATC). J Clin Oncol 2009;24(18_suppl):300S.
- 40. Rowland KJ, Jin LX, Moley JF. Biochemical cure after reoperations for medullary thyroid carcinoma: a meta-analysis. Ann Surg Oncol. 2015;22:96-102. doi:10.1245/s10434-014-4102-y
- Hong SK, Starenki D, Johnson OT, Gestwicki JE, Park JI. Analogs of the heat shock protein 70 inhibitor MKT-077 suppress medullary thyroid carcinoma cells. Int J Mol Sci. 2022;23(3):1063. doi:10.3390/ijms23031063